Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = kiwi juice pomace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3069 KB  
Article
Comparison of Aroma and Taste Profiles of Kiwi Wine Fermented with/without Peel by Combining Intelligent Sensory, Gas Chromatography-Mass Spectrometry, and Proton Nuclear Magnetic Resonance
by Bingde Zhou, Xiaochen Liu, Qiuyu Lan, Fang Wan, Zhibo Yang, Xin Nie, Zijian Cai, Bin Hu, Junni Tang, Chenglin Zhu and Luca Laghi
Foods 2024, 13(11), 1729; https://doi.org/10.3390/foods13111729 - 31 May 2024
Cited by 10 | Viewed by 2547
Abstract
Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, [...] Read more.
Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste. This study compared the aroma and taste profiles of KW from peeled (PKW) and unpeeled (UKW) kiwifruits by combining intelligent sensory technology, GC-MS, and 1H-NMR. Focusing on aroma profiles, 75 volatile organic compounds (VOCs) were identified in KW fermented with peel, and 73 VOCs in KW without peel, with 62 VOCs common to both. Among these compounds, rose oxide, D-citronellol, and bornylene were more abundant in UKW, while hexyl acetate, isoamyl acetate, and 2,4,5-trichlorobenzene were significantly higher in PKW. For taste profiles, E-tongue analysis revealed differences in the taste profiles of KW from the two sources. A total of 74 molecules were characterized using 1H-NMR. UKW exhibited significantly higher levels of tartrate, galactarate, N-acetylserotonin, 4-hydroxy-3-methoxymandelate, fumarate, and N-acetylglycine, along with a significantly lower level of oxypurinol compared to PKW. This study seeks to develop the theoretical understanding of the fermentation of kiwifruit with peel in sight of the utilization of the whole fruit for KW production, to increase the economic value of kiwifruit production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

14 pages, 1830 KB  
Article
Exploitation of Kiwi Juice Pomace for the Recovery of Natural Antioxidants through Microwave-Assisted Extraction
by Katya Carbone, Tiziana Amoriello and Rosamaria Iadecola
Agriculture 2020, 10(10), 435; https://doi.org/10.3390/agriculture10100435 - 26 Sep 2020
Cited by 36 | Viewed by 4832
Abstract
In a completely green approach to the exploitation of kiwi juice pomace (KP), a microwaved-assisted extraction (MAE) process was performed to extract antioxidant compounds present in KP, evaluating the influence of four independent process variables (temperature (T), extraction time (E), solvent composition (C), [...] Read more.
In a completely green approach to the exploitation of kiwi juice pomace (KP), a microwaved-assisted extraction (MAE) process was performed to extract antioxidant compounds present in KP, evaluating the influence of four independent process variables (temperature (T), extraction time (E), solvent composition (C), and solid-to-solvent ratio (R)) on the response of total phenolic content (TPC). The optimal conditions for the green extraction of total polyphenols from KP were obtained using a three-level fractional factorial design under response surface methodology (RSM) coupled with desirability optimization, and a feed-forward multilayered perceptron artificial neural network (ANN) with a back-propagation algorithm. Data were analyzed by ANOVA and fitted to a second-order polynomial equation using the regression method. Results showed that T was the most influential factor, followed by R and C, whereas the extraction time (E) was not shown to have a significant linear effect on the extraction yield of total polyphenols (TPs). The optimal conditions based on both individual and combinations of all responses were found out (T: 75 °C; E: 15 min; C: 50% ethanol:water; R: 1:15), and under these conditions the obtained extract showed both a high bioactive compound content and a high antioxidant potential, pointing out how this by-product could become an inexpensive source of compounds with high added value. A very good agreement was observed between experimental and calculated extraction yields, thus supporting the use of these models to quantitatively describe the recovery of natural antioxidants from KP. Finally, the ANN model exhibited more accurate prediction and better generalization capabilities than the RSM model (R2: 0.90 and 0.99, for RSM and ANN, respectively). Full article
Show Figures

Figure 1

Back to TopTop