Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = key period of plant–water relationship regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3185 KiB  
Article
Daily Water Requirements of Vegetation in the Urban Green Spaces in the City of Panaji, India
by Manish Ramaiah and Ram Avtar
Water 2025, 17(10), 1487; https://doi.org/10.3390/w17101487 - 15 May 2025
Viewed by 565
Abstract
From the urban sustainability perspective and from the steps essential for regulating/balancing the microclimate features, the creation and maintenance of urban green spaces (UGS) are vital. The UGS include vegetation of any kind in urban areas such as parks, gardens, vertical gardens, trees, [...] Read more.
From the urban sustainability perspective and from the steps essential for regulating/balancing the microclimate features, the creation and maintenance of urban green spaces (UGS) are vital. The UGS include vegetation of any kind in urban areas such as parks, gardens, vertical gardens, trees, hedge plants, and roadside plants. This “urban green infrastructure” is a cost-effective and energy-saving means for ensuring sustainable development. The relationship between urban landscape patterns and microclimate needs to be sufficiently understood to make urban living ecologically, economically, and ergonomically justifiable. In this regard, information on diverse patterns of land use intensity or spatial growth is essential to delineate both beneficial and adverse impacts on the urban environment. With this background, the present study aimed to address water requirements of UGS plants and trees during the non-rainy months from Panaji city (Koppen classification: Am) situated on the west coast of India, which receives over 2750 mm of rainfall, almost exclusively during June–September. During the remaining eight months, irrigating the plants in the UGS becomes a serious necessity. In this regard, the daily water requirements (DWR) of 34 tree species, several species of hedge plants, and lawn areas were estimated using standard methods that included primary (field survey-based) and secondary (inputs from key-informant survey questionnaires) data collection to address water requirement of the UGS vegetation. Monthly evapotranspiration rates (ETo) were derived in this study and were used for calculating the water requirement of the UGS. The day–night average ETo was over 8 mm, which means that there appears to be an imminent water stress in most UGS of the city in particular during the January–May period. The DWR in seven gardens of Panaji city were ~25 L/tree, 6.77 L/m2 hedge plants, and 4.57 L/m2 groundcover (=lawns). The water requirements for the entire UGS in Panaji city were calculated. Using this information, the estimated total daily volume of water required for the entire UGS of 1.86 km2 in Panaji city is 7.10 million liters. The current supply from borewells of 64,200 L vis a vis means that the ETo-based DWR of 184,086 L is at a shortage of over 2.88 times and is far inadequate for meeting the daily demand of hedge plants and lawn/groundcover. Full article
Show Figures

Figure 1

23 pages, 6115 KiB  
Article
A Copula Function–Monte Carlo Method-Based Assessment of the Risk of Agricultural Water Demand in Xinjiang, China
by Xianli Wang, Zhigang Zhao, Feilong Jie, Jingjing Xu, Sheng Li, Kun Hao and Youliang Peng
Agriculture 2024, 14(11), 2000; https://doi.org/10.3390/agriculture14112000 - 7 Nov 2024
Viewed by 906
Abstract
Agricultural water resources in Xinjiang, China, face significant supply and demand contradictions. Agricultural water demand risk is a key factor impacting water resource management. This study employs the copula function (CF) and Monte Carlo (MC) methods to evaluate agricultural water demand risk at [...] Read more.
Agricultural water resources in Xinjiang, China, face significant supply and demand contradictions. Agricultural water demand risk is a key factor impacting water resource management. This study employs the copula function (CF) and Monte Carlo (MC) methods to evaluate agricultural water demand risk at 66 stations in Xinjiang. The evaluation is based on the marginal distributions of precipitation (PR) and reference evapotranspiration (RET). The findings classify Xinjiang’s precipitation–evapotranspiration relationship into three types: evapotranspiration, precipitation, and transition. Regions south of the Tianshan Mountains (TMs) primarily exhibit evapotranspiration characteristics. The Ili River Valley and areas north of the TMs display precipitation characteristics. Other areas north of the TMs have transitional characteristics. Both annual precipitation and RET in Xinjiang follow the Generalized Extreme Value (GEV) distribution. The Frank CF effectively describes the coupling relationship between precipitation and RET, revealing a negative correlation. This negative correlation is stronger north of the TMs and weaker to the south. The agricultural water demand risk in Xinjiang varies significantly across regions, with the precipitation–RET relationship being a crucial influencing factor. The demand index (DI) for agricultural water decreases as the risk probability (RP) increases. The stability of the DI is greatest in evapotranspiration-type regions, followed by transition-type, and weakest in precipitation-type regions. When the RP is constant, the DI decreases in the order of evapotranspiration, transition, and precipitation types. This study quantifies the spatial pattern of agricultural water demand risk in Xinjiang. The advantage of the CF–MC method lies in its ability to assess this risk without needing crop planting structures and its ability to evaluate spatial variations. However, it is less effective in areas with few meteorological stations or short monitoring periods. Future efforts should focus on accurately assessing water demand risk in data-deficient areas. The findings are crucial for guiding the regulation and efficient use of agricultural water resources in Xinjiang. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

14 pages, 2092 KiB  
Article
Soil Hydrology Process and Rational Use of Soil Water in Desert Regions
by Zhongsheng Guo
Water 2021, 13(17), 2377; https://doi.org/10.3390/w13172377 - 29 Aug 2021
Cited by 12 | Viewed by 3797
Abstract
There is a balanced plant–water relationship in the original vegetation in the desert area. With the increase in the population and social development of the desert area, people need the goods and services of the forest vegetation ecosystem. To meet the growing demand [...] Read more.
There is a balanced plant–water relationship in the original vegetation in the desert area. With the increase in the population and social development of the desert area, people need the goods and services of the forest vegetation ecosystem. To meet the growing demand for plant community goods and services, more original vegetation has been changed into non-native vegetation, such as in the Loess Plateau in China. However, with the plant growth, sometime soil drying happens and becomes gradually serious with time in most desert regions. Serious drying of soil eventually results in soil quality degradation, vegetation decline, and crop failure, which influence the produce and supply of forest vegetation goods and services in the market in dry years or waste of soil water resources in wet years, which wastes precious natural resources. In order to use soil water rationally, soil water must be used in a sustainable way and the plant–water relationship has to be regulated for the Soil Water carrying capacity for vegetation in the key period of plant–water relationship regulation to carry out a sustainable use of natural resources, high-quality sustainable development of forest and grass, and high-quality production of fruit and crops in desert regions. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

23 pages, 4402 KiB  
Article
Contrasting Influences of Seasonal and Intra-Seasonal Hydroclimatic Variabilities on the Irrigated Rice Paddies of Northern Peninsular Malaysia for Weather Index Insurance Design
by Zed Zulkafli, Farrah Melissa Muharam, Nurfarhana Raffar, Amirparsa Jajarmizadeh, Mukhtar Jibril Abdi, Balqis Mohamed Rehan and Khairudin Nurulhuda
Sustainability 2021, 13(9), 5207; https://doi.org/10.3390/su13095207 - 7 May 2021
Cited by 6 | Viewed by 3121
Abstract
Good index selection is key to minimising basis risk in weather index insurance design. However, interannual, seasonal, and intra-seasonal hydroclimatic variabilities pose challenges in identifying robust proxies for crop losses. In this study, we systematically investigated 574 hydroclimatic indices for their relationships with [...] Read more.
Good index selection is key to minimising basis risk in weather index insurance design. However, interannual, seasonal, and intra-seasonal hydroclimatic variabilities pose challenges in identifying robust proxies for crop losses. In this study, we systematically investigated 574 hydroclimatic indices for their relationships with yield in Malaysia’s irrigated double planting system, using the Muda rice granary as a case study. The responses of seasonal rice yields to seasonal and monthly averages and to extreme rainfall, temperature, and streamflow statistics from 16 years’ observations were examined by using correlation analysis and linear regression. We found that the minimum temperature during the crop flowering to the maturity phase governed yield in the drier off-season (season 1, March to July, Pearson correlation, r = +0.87; coefficient of determination, R2 = 74%). In contrast, the average streamflow during the crop maturity phase regulated yield in the main planting season (season 2, September to January, r = +0.82, R2 = 67%). During the respective periods, these indices were at their lowest in the seasons. Based on these findings, we recommend temperature- and water-supply-based indices as the foundations for developing insurance contracts for the rice system in northern Peninsular Malaysia. Full article
(This article belongs to the Special Issue Climate Risk Management for Resilient Agricultural Systems)
Show Figures

Figure 1

Back to TopTop