Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = keto-functionalized cyclic carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3497 KB  
Article
CuCl/Ionic Liquid Catalyzed Cascade Transformation of CO2 and Alkyne-1,2-Diols: Synthesis of Keto-Functionalized Cyclic Carbonates
by Duozhen Chai, Chongli Wang, Jinzhen Liu, Dongfeng Cao, Kaixuan Guo, Yuankun Wang, Ye Yuan and Francis Verpoort
Catalysts 2025, 15(3), 279; https://doi.org/10.3390/catal15030279 - 17 Mar 2025
Viewed by 1505
Abstract
The cyclization of propargyl alcohols with CO2 represents a highly significant method for the utilization of CO2. The resulting cyclic carbonates possesses high chemical value and hold great potential for applications in battery electrolytes, polymer precursors, and pharmaceutical intermediates. However, [...] Read more.
The cyclization of propargyl alcohols with CO2 represents a highly significant method for the utilization of CO2. The resulting cyclic carbonates possesses high chemical value and hold great potential for applications in battery electrolytes, polymer precursors, and pharmaceutical intermediates. However, most existing reports on this cyclization have been limited to simple propargyl alcohol substrates that are substituted with inert alkyl, cycloalkyl, and phenyl groups. For functionalized propargyl alcohols, such as alkyne-1,2-diols, only a single report has been documented thus far. In this study, we have developed an innovative catalytic system comprising cost-effective copper salts and environmentally friendly ionic liquids (CuCl/1-ethyl-3-methylimidazolium acetate) for the cyclization of alkyne-1,2-diols with CO2. Compared to the previously reported AgF/bulky monophosphine ligand (BrettPhos) system, our system is free of traditional volatile solvents, phosphine ligands, and additives. Notably, this is the first reported Cu(I)-catalyzed system for this cyclization, offering significant advantages in terms of cost-effectiveness and reduced toxicity compared to silver salts. Moreover, the use of ionic liquids ensures considerable recyclability, further enhancing the sustainability and practicality of this approach. Full article
(This article belongs to the Special Issue Ionic Liquids and Eutectic Mixtures for Green Catalytic Processes)
Show Figures

Graphical abstract

Back to TopTop