Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = japanese handwritting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 445 KiB  
Article
Classification of Japanese Handwritten Characters Using Biometrics Approach
by Piotr Szymkowski, Khalid Saeed, Łukasz Szymkowski and Nobuyuki Nishiuchi
Appl. Sci. 2024, 14(1), 225; https://doi.org/10.3390/app14010225 - 26 Dec 2023
Cited by 1 | Viewed by 1980
Abstract
The following paper presents a solution to the problem of offline recognition of Japanese characters. Minutiae and other features extractable from handwriting images have been used to recognize individual characters. The solution presented by the authors uses minutiae to recognise single Japanese characters. [...] Read more.
The following paper presents a solution to the problem of offline recognition of Japanese characters. Minutiae and other features extractable from handwriting images have been used to recognize individual characters. The solution presented by the authors uses minutiae to recognise single Japanese characters. Due to the complexity of this typeface, the solution presented can be used to recognise archaic characters, from old documents or also works of art. Neural Networks and hybrid classifiers based on five basic types of classifiers, i.e., k-nearest neighbour method, decision trees, support vector machine, logistic regression and Gaussian Naive Bayes classifier have been developed for classification. The study was conducted on Hiragana, Katakana and Kanji characters (ETL9G Database). The accuracy value obtained was 99.934%. The authors present what is probably the first algorithm using minutiae to recognize Japanese handwriting. Full article
(This article belongs to the Special Issue Multimedia Signal Processing: Theory, Methods, and Applications)
Show Figures

Figure 1

14 pages, 883 KiB  
Article
Important Features Selection and Classification of Adult and Child from Handwriting Using Machine Learning Methods
by Jungpil Shin, Md. Maniruzzaman, Yuta Uchida, Md. Al Mehedi Hasan, Akiko Megumi, Akiko Suzuki and Akira Yasumura
Appl. Sci. 2022, 12(10), 5256; https://doi.org/10.3390/app12105256 - 23 May 2022
Cited by 20 | Viewed by 4326
Abstract
The classification of different age groups, such as adult and child, based on handwriting is very important due to its various applications in many different fields. In forensics, handwriting classification helps investigators focus on a certain category of writers. This paper aimed to [...] Read more.
The classification of different age groups, such as adult and child, based on handwriting is very important due to its various applications in many different fields. In forensics, handwriting classification helps investigators focus on a certain category of writers. This paper aimed to propose a machine-learning (ML)-based approach for automatically classifying people as adults or children based on their handwritten data. This study utilized two types of handwritten databases: handwritten text and handwritten pattern, which were collected using a pen tablet. The handwritten text database had 57 subjects (adult: 26 vs. child: 31). Each subject (adult or child) wrote the same 30 words using Japanese hiragana characters. The handwritten pattern database had 81 subjects (adult: 42 and child: 39). Each subject (adult or child) drew four different lines as zigzag lines (trace condition and predict condition), and periodic lines (trace condition and predict condition) and repeated these line tasks three times. Handwriting classification of adult and child is performed in three steps: (i) feature extraction; (ii) feature selection; and (iii) classification. We extracted 30 features from both handwritten text and handwritten pattern datasets. The most efficient features were selected using sequential forward floating selection (SFFS) method and the optimal parameters were selected. Then two ML-based approaches, namely, support vector machine (SVM) and random forest (RF) were applied to classify adult and child. Our findings showed that RF produced up to 93.5% accuracy for handwritten text and 89.8% accuracy for handwritten pattern databases. We hope that this study will provide the evidence of the possibility of classifying adult and child based on handwriting text and handwriting pattern data. Full article
(This article belongs to the Special Issue Human and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 3780 KiB  
Article
Recognition of Cursive Pashto Optical Digits and Characters with Trio Deep Learning Neural Network Models
by Muhammad Zubair Rehman, Nazri Mohd. Nawi, Mohammad Arshad and Abdullah Khan
Electronics 2021, 10(20), 2508; https://doi.org/10.3390/electronics10202508 - 15 Oct 2021
Cited by 6 | Viewed by 3777
Abstract
Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in [...] Read more.
Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in this perspective. It becomes more difficult for OCR applications to recognize handwritten characters and digits, because handwriting is influenced by the writer’s hand dynamics. Moreover, there was no publicly available dataset for handwritten Pashto digits before this study. Due to this, there was no work performed on the recognition of Pashto handwritten digits and characters combined. To achieve this objective, a dataset of Pashto handwritten digits consisting of 60,000 images was created. The trio deep learning Convolutional Neural Network, i.e., CNN, LeNet, and Deep CNN were trained and tested with both Pashto handwritten characters and digits datasets. From the simulations, the Deep CNN achieved 99.42 percent accuracy for Pashto handwritten digits, 99.17 percent accuracy for handwritten characters, and 70.65 percent accuracy for combined digits and characters. Similarly, LeNet and CNN models achieved slightly less accuracies (LeNet; 98.82, 99.15, and 69.82 percent and CNN; 98.30, 98.74, and 66.53 percent) for Pashto handwritten digits, Pashto characters, and the combined Pashto digits and characters recognition datasets, respectively. Based on these results, the Deep CNN model is the best model in terms of accuracy and loss as compared to the other two models. Full article
(This article belongs to the Special Issue Machine Learning Technologies for Big Data Analytics)
Show Figures

Figure 1

Back to TopTop