Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = jackfruit seed oil methyl ester (JACKFSNOB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19914 KiB  
Article
Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends
by K. M. V. Ravi Teja, P. Issac Prasad, K. Vijaya Kumar Reddy, N. R. Banapurmath, Manzoore Elahi M. Soudagar, T. M. Yunus Khan and Irfan Anjum Badruddin
Sustainability 2021, 13(17), 9613; https://doi.org/10.3390/su13179613 - 26 Aug 2021
Cited by 7 | Viewed by 2818
Abstract
Environmentally friendly, renewable, and green fuels have many benefits over fossil fuels, particularly regarding energy efficiency, in addition to addressing environmental and socioeconomic problems. As a result, green fuels can be used in transportation and power generating applications. Furthermore, being green can ably [...] Read more.
Environmentally friendly, renewable, and green fuels have many benefits over fossil fuels, particularly regarding energy efficiency, in addition to addressing environmental and socioeconomic problems. As a result, green fuels can be used in transportation and power generating applications. Furthermore, being green can ably address the emission-related issues of global warming. In view of the advantages of renewable fuels, two B20 fuel blends obtained from methyl esters of cashew nutshell (CHNOB), jackfruit seed (JACKFSNOB), and jamun seed oils (JAMSOB) were selected to evaluate the performance of a common rail direct injection (CRDI) engine. Compatibility of the nozzle geometry (NG) and combustion chamber shape (CCS) were optimized for increased engine performance. The optimized CCS matched with an increased number of injector nozzle holes in NG showed reasonably improved brake thermal efficiency (BTE), reduced emissions of smoke, HC, and CO, respectively, while NOx increased. Further combustion parameters, such as ignition delay (ID) and combustion duration (CD) reduced, while peak pressure (PP) and heat release rates (HRR) increased at the optimized injection parameters. The CRDI engine powered with JAMSOB B20 showed an increase in BTE of 4–5%, while a significant reduction in HC and CO emissions was obtained compared to JACKFSNOB B20 and CHNOB B20, with increased NOx. Full article
(This article belongs to the Special Issue Renewable Biodiesel/Green Diesel for a Sustainable Future)
Show Figures

Figure 1

Back to TopTop