Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = isoplumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3902 KiB  
Article
The Effectiveness of Isoplumbagin and Plumbagin in Regulating Amplitude, Gating Kinetics, and Voltage-Dependent Hysteresis of erg-mediated K+ Currents
by Linyi Chen, Hsin-Yen Cho, Tzu-Hsien Chuang, Ting-Ling Ke and Sheng-Nan Wu
Biomedicines 2022, 10(4), 780; https://doi.org/10.3390/biomedicines10040780 - 27 Mar 2022
Cited by 7 | Viewed by 2611
Abstract
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell [...] Read more.
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 μM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 μM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4′-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur. Full article
(This article belongs to the Special Issue Actions of Small Molecules on Varying Type of Membrane Ion Channels)
Show Figures

Figure 1

17 pages, 8473 KiB  
Article
Discovery of Isoplumbagin as a Novel NQO1 Substrate and Anti-Cancer Quinone
by Yen-Chi Tsao, Yu-Jung Chang, Chun-Hsien Wang and Linyi Chen
Int. J. Mol. Sci. 2020, 21(12), 4378; https://doi.org/10.3390/ijms21124378 - 19 Jun 2020
Cited by 25 | Viewed by 4000
Abstract
Isoplumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone from Lawsonia inermis and Plumbago europaea, has been reported to have anti-inflammatory and antimicrobial activity. Inflammation has long been implicated in cancer progression. In this study, we examined the anticancer effect of chemically synthesized isoplumbagin. Our [...] Read more.
Isoplumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone from Lawsonia inermis and Plumbago europaea, has been reported to have anti-inflammatory and antimicrobial activity. Inflammation has long been implicated in cancer progression. In this study, we examined the anticancer effect of chemically synthesized isoplumbagin. Our results revealed that isoplumbagin treatment suppressed cell viability and invasion of highly invasive oral squamous cell carcinoma (OSCC) OC3-IV2 cells, glioblastoma U87 cells, non-small cell lung carcinoma H1299 cells, prostate cancer PC3 cells, and cervical cancer HeLa cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Boyden chamber assays. In vivo studies demonstrate the inhibitory effect of 2 mg/kg isoplumbagin on the growth of orthotopic xenograft tumors derived from OSCC cells. Mechanistically, isoplumbagin exerts its cytotoxic effect through acting as a substrate of reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] dehydrogenase quinone 1 (NQO1) to generate hydroquinone, which reverses mitochondrial fission phenotype, reduces mitochondrial complex IV activity, and thus compromises mitochondrial function. Collectively, this work reveals an anticancer activity of isoplumbagin mainly through modulating mitochondrial dynamics and function. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop