Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = isobutyl cyanoacrylate nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5848 KiB  
Article
In Vitro Efficacy of Isobutyl Cyanoacrylate Nanoparticles against Fish Bacterial Pathogens and Selection Preference by Rainbow Trout (Oncorhynchus mykiss)
by Mawuko G. Ahiable, Kouki Matsunaga, Mao Hokin, Kazuhiro Iida, Fumiaki Befu and Syun-Ichirou Oshima
Microorganisms 2023, 11(12), 2877; https://doi.org/10.3390/microorganisms11122877 - 28 Nov 2023
Cited by 1 | Viewed by 1720
Abstract
The upsurge in havoc being wreaked by antibiotic-resistant bacteria has led to an urgent need for efficacious alternatives to antibiotics. This study assessed the antibacterial efficacy of two isobutyl cyanoacrylate nanoparticles (iBCA-NPs), D6O and NP30, against major bacterial pathogens of fish. In vivo [...] Read more.
The upsurge in havoc being wreaked by antibiotic-resistant bacteria has led to an urgent need for efficacious alternatives to antibiotics. This study assessed the antibacterial efficacy of two isobutyl cyanoacrylate nanoparticles (iBCA-NPs), D6O and NP30, against major bacterial pathogens of fish. In vivo tests on rainbow trout were preceded by in vitro tests of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). NP30 exhibited higher efficacy than D60, but both iBCA-NPs demonstrated dose-dependent and species-specific in vitro antibacterial properties against the bacterial isolates. Generally, Gram-negative bacteria were more resistant to the iBCA-NPs. Streptococcus iniae, Tenacibaculum maritimum, and Photobacterium damselae were particularly sensitive to both iBCA-NPs. Administered to rainbow trout at 3571.4 mg (iBCA-NP)/kg feed, the iBCA-NPs produced a relative gain rate and survival rates comparable to the control (p > 0.05). The condition factor and the hepatosomatic and viscerosomatic indices of fish were indifferentiable (p > 0.05) between the iBCA-NP groups and the control. The iBCA-NPs caused no alteration in stress, oxidative stress (superoxide dismutase, SOD), plasma complement titer, or lysozyme activity. This study presents the first report of antibacterial activity of iBCA-NPs against Gram-negative bacteria. The results of this study suggest that D60 and NP30 may contribute to reducing the amounts of antibiotics and chemotherapeutic agents used in aquaculture. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

13 pages, 2467 KiB  
Article
Evaluation of the Growth-Inhibitory Spectrum of Three Types of Cyanoacrylate Nanoparticles on Gram-Positive and Gram-Negative Bacteria
by Fean Davisunjaya Sarian, Kazuki Ando, Shota Tsurumi, Ryohei Miyashita, Koichi Ute and Takeshi Ohama
Membranes 2022, 12(8), 782; https://doi.org/10.3390/membranes12080782 - 15 Aug 2022
Cited by 8 | Viewed by 2466
Abstract
The development of novel effective antibacterial agents is crucial due to increasing antibiotic resistance in various bacteria. Poly (alkyl cyanoacrylate) nanoparticles (PACA-NPs) are promising novel antibacterial agents as they have shown antibacterial activity against several Gram-positive and Gram-negative bacteria. However, the antibacterial mechanism [...] Read more.
The development of novel effective antibacterial agents is crucial due to increasing antibiotic resistance in various bacteria. Poly (alkyl cyanoacrylate) nanoparticles (PACA-NPs) are promising novel antibacterial agents as they have shown antibacterial activity against several Gram-positive and Gram-negative bacteria. However, the antibacterial mechanism remains unclear. Here, we compared the antibacterial efficacy of ethyl cyanoacrylate nanoparticles (ECA-NPs), isobutyl cyanoacrylate NPs (iBCA-NPs), and ethoxyethyl cyanoacrylate NPs (EECA-NPs) using five Gram-positive and five Gram-negative bacteria. Among these resin nanoparticles, ECA-NPs showed the highest growth inhibitory effect against all the examined bacterial species, and this effect was higher against Gram-positive bacteria than Gram-negative. While iBCA-NP could inhibit the cell growth only in two Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, it had negligible inhibitory effect against all five Gram-negative bacteria examined. Irrespective of the differences in growth inhibition induced by these three NPs, N-acetyl-L-cysteine (NAC), a well-known reactive oxygen species (ROS) scavenger, efficiently restored growth in all the bacterial strains to that similar to untreated cells. This strongly suggests that the exposure to NPs generates ROS, which mainly induces cell growth inhibition irrespective of the difference in bacterial species and cyanoacrylate NPs used. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanoparticles Interaction with Bio-Membranes)
Show Figures

Figure 1

Back to TopTop