Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = irreversible thermomechanical heat engines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 979 KiB  
Article
Progress in Carnot and Chambadal Modeling of Thermomechanical Engine by Considering Entropy Production and Heat Transfer Entropy
by Michel Feidt and Monica Costea
Entropy 2019, 21(12), 1232; https://doi.org/10.3390/e21121232 - 16 Dec 2019
Cited by 34 | Viewed by 4029
Abstract
Nowadays the importance of thermomechanical engines is recognized worldwide. Since the industrial revolution, physicists and engineers have sought to maximize the efficiency of these machines, but also the mechanical energy or the power output of the engine, as we have recently found. The [...] Read more.
Nowadays the importance of thermomechanical engines is recognized worldwide. Since the industrial revolution, physicists and engineers have sought to maximize the efficiency of these machines, but also the mechanical energy or the power output of the engine, as we have recently found. The optimization procedure applied in many works in the literature focuses on considering new objective functions including economic and environmental criteria (i.e., ECOP ecological coefficient of performance). The debate here is oriented more towards fundamental aspects. It is known that the maximum of the power output is not obtained under the same conditions as the maximum of efficiency. This is shown, among other things, by the so-called nice radical that accounts for efficiency at maximum power, most often for the endoreversible configuration. We propose here to enrich the model and the debate by emphasizing the fundamental role of the heat transfer entropy together with the production of entropy, accounting for the external or internal irreversibilities of the converter. This original modeling to our knowledge, leads to new and more general results that are reported here. The main consequences of the approach are emphasized, and new limits of the efficiency at maximum energy or power output are obtained. Full article
(This article belongs to the Special Issue Carnot Cycle and Heat Engine Fundamentals and Applications)
Show Figures

Figure 1

15 pages, 145 KiB  
Article
Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines
by Michel Feidt
Entropy 2010, 12(12), 2470-2484; https://doi.org/10.3390/e12122470 - 21 Dec 2010
Cited by 9 | Viewed by 7317
Abstract
The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a [...] Read more.
The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink): this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine), and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one). Consequences of the proposal are examined; some new analytical results are proposed for efficiencies. Full article
(This article belongs to the Special Issue Advances in Thermodynamics)
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Optimal Thermodynamics—New Upperbounds
by Michel Feidt
Entropy 2009, 11(4), 529-547; https://doi.org/10.3390/e11040529 - 28 Sep 2009
Cited by 75 | Viewed by 13161
Abstract
This paper reviews how ideas have evolved in this field from the pioneering work of CARNOT right up to the present. The coupling of thermostatics with thermokinetics (heat and mass transfers) and entropy or exergy analysis is illustrated through study of thermomechanical engines [...] Read more.
This paper reviews how ideas have evolved in this field from the pioneering work of CARNOT right up to the present. The coupling of thermostatics with thermokinetics (heat and mass transfers) and entropy or exergy analysis is illustrated through study of thermomechanical engines such as the Carnot heat engine, and internal combustion engines. The benefits and importance of stagnation temperature and irreversibility parameters are underlined. The main situations of constrained (or unconstrained) optimization are defined, discussed and illustrated. The result of this study is a new branch of thermodynamics: Finite Dimensions Optimal Thermodynamics (FDOT). Full article
(This article belongs to the Special Issue Exergy: Analysis and Applications)
Show Figures

Figure 1

Back to TopTop