Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = invertebrate iridoviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2034 KiB  
Article
Viral Metagenomic Profiling of Croatian Bat Population Reveals Sample and Habitat Dependent Diversity
by Ivana Šimić, Tomaž Mark Zorec, Ivana Lojkić, Nina Krešić, Mario Poljak, Florence Cliquet, Evelyne Picard-Meyer, Marine Wasniewski, Vida Zrnčić, Anđela Ćukušić and Tomislav Bedeković
Viruses 2020, 12(8), 891; https://doi.org/10.3390/v12080891 - 14 Aug 2020
Cited by 20 | Viewed by 5272
Abstract
To date, the microbiome, as well as the virome of the Croatian populations of bats, was unknown. Here, we present the results of the first viral metagenomic analysis of guano, feces and saliva (oral swabs) of seven bat species (Myotis myotis, [...] Read more.
To date, the microbiome, as well as the virome of the Croatian populations of bats, was unknown. Here, we present the results of the first viral metagenomic analysis of guano, feces and saliva (oral swabs) of seven bat species (Myotis myotis, Miniopterus schreibersii, Rhinolophus ferrumequinum, Eptesicus serotinus, Myotis blythii, Myotis nattereri and Myotis emarginatus) conducted in Mediterranean and continental Croatia. Viral nucleic acids were extracted from sample pools, and analyzed using Illumina sequencing. The presence of 63 different viral families representing all seven Baltimore groups were confirmed, most commonly insect viruses likely reflecting the diet of insectivorous bats. Virome compositions of our samples were largely impacted by the sample type: invertebrate-infecting viruses were most frequently found in feces, bacterial viruses in guano, whereas vertebrate-infecting viruses were most common in swabs. Most vertebrate-infecting virus sequences were assigned to retroviruses, parvoviruses, iridoviruses, and poxviruses. We further report the complete genome sequence of a novel adeno-associated virus, densovirus and a near complete length genome sequence of a novel iflavirus. Additionally, one of the most interesting findings in this study was the difference in viromes between two contrasting habitats, the continental and Mediterranean Croatia. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

25 pages, 3349 KiB  
Article
Detection and Characterization of Invertebrate Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two Decades
by Tibor Papp and Rachel E. Marschang
Viruses 2019, 11(7), 600; https://doi.org/10.3390/v11070600 - 2 Jul 2019
Cited by 28 | Viewed by 5135
Abstract
Invertebrate iridoviruses (IIVs), while mostly described in a wide range of invertebrate hosts, have also been repeatedly detected in diagnostic samples from poikilothermic vertebrates including reptiles and amphibians. Since iridoviruses from invertebrate and vertebrate hosts differ strongly from one another based not only [...] Read more.
Invertebrate iridoviruses (IIVs), while mostly described in a wide range of invertebrate hosts, have also been repeatedly detected in diagnostic samples from poikilothermic vertebrates including reptiles and amphibians. Since iridoviruses from invertebrate and vertebrate hosts differ strongly from one another based not only on host range but also on molecular characteristics, a series of molecular studies and bioassays were performed to characterize and compare IIVs from various hosts and evaluate their ability to infect a vertebrate host. Eight IIV isolates from reptilian and orthopteran hosts collected over a period of six years were partially sequenced. Comparison of eight genome portions (total over 14 kbp) showed that these were all very similar to one another and to an earlier described cricket IIV isolate, thus they were given the collective name lizard–cricket IV (Liz–CrIV). One isolate from a chameleon was also subjected to Illumina sequencing and almost the entire genomic sequence was obtained. Comparison of this longer genome sequence showed several differences to the most closely related IIV, Invertebrate iridovirus 6 (IIV6), the type species of the genus Iridovirus, including several deletions and possible recombination sites, as well as insertions of genes of non-iridoviral origin. Three isolates from vertebrate and invertebrate hosts were also used for comparative studies on pathogenicity in crickets (Gryllus bimaculatus) at 20 and 30 °C. Finally, the chameleon isolate used for the genome sequencing studies was also used in a transmission study with bearded dragons. The transmission studies showed large variability in virus replication and pathogenicity of the three tested viruses in crickets at the two temperatures. In the infection study with bearded dragons, lizards inoculated with a Liz–CrIV did not become ill, but the virus was detected in numerous tissues by qPCR and was also isolated in cell culture from several tissues. Highest viral loads were measured in the gastro-intestinal organs and in the skin. These studies demonstrate that Liz–CrIV circulates in the pet trade in Europe. This virus is capable of infecting both invertebrates and poikilothermic vertebrates, although its involvement in disease in the latter has not been proven. Full article
Show Figures

Figure 1

25 pages, 11257 KiB  
Review
Invertebrate Iridoviruses: A Glance over the Last Decade
by İkbal Agah İnce, Orhan Özcan, Ayca Zeynep Ilter-Akulke, Erin D. Scully and Arzu Özgen
Viruses 2018, 10(4), 161; https://doi.org/10.3390/v10040161 - 30 Mar 2018
Cited by 36 | Viewed by 8834
Abstract
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; [...] Read more.
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

18 pages, 1244 KiB  
Article
The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae
by Heather E. Eaton, Brooke A. Ring and Craig R. Brunetti
Viruses 2010, 2(7), 1458-1475; https://doi.org/10.3390/v2071458 - 15 Jul 2010
Cited by 48 | Viewed by 12610
Abstract
The Iridoviridae family are large viruses (~120-200 nm) that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs) for frog virus 3 to 212,482 bases encoding 211 ORFs for [...] Read more.
The Iridoviridae family are large viruses (~120-200 nm) that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs) for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family. Full article
(This article belongs to the Special Issue Viral Genomics and Bioinformatics)
Show Figures

Graphical abstract

Back to TopTop