Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = inverse Nadarajah–Haghighi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 11039 KB  
Article
Optimum Progressive Data Analysis and Bayesian Inference for Unified Progressive Hybrid INH Censoring with Applications to Diamonds and Gold
by Heba S. Mohammed, Osama E. Abo-Kasem and Ahmed Elshahhat
Axioms 2025, 14(8), 559; https://doi.org/10.3390/axioms14080559 - 23 Jul 2025
Cited by 1 | Viewed by 514
Abstract
A novel unified progressive hybrid censoring is introduced to combine both progressive and hybrid censoring plans to allow flexible test termination either after a prespecified number of failures or at a fixed time. This work develops both frequentist and Bayesian inferential procedures for [...] Read more.
A novel unified progressive hybrid censoring is introduced to combine both progressive and hybrid censoring plans to allow flexible test termination either after a prespecified number of failures or at a fixed time. This work develops both frequentist and Bayesian inferential procedures for estimating the parameters, reliability, and hazard rates of the inverted Nadarajah–Haghighi lifespan model when a sample is produced from such a censoring plan. Maximum likelihood estimators are obtained through the Newton–Raphson iterative technique. The delta method, based on the Fisher information matrix, is utilized to build the asymptotic confidence intervals for each unknown quantity. In the Bayesian methodology, Markov chain Monte Carlo techniques with independent gamma priors are implemented to generate posterior summaries and credible intervals, addressing computational intractability through the Metropolis—Hastings algorithm. Extensive Monte Carlo simulations compare the efficiency and utility of frequentist and Bayesian estimates across multiple censoring designs, highlighting the superiority of Bayesian inference using informative prior information. Two real-world applications utilizing rare minerals from gold and diamond durability studies are examined to demonstrate the adaptability of the proposed estimators to the analysis of rare events in precious materials science. By applying four different optimality criteria to multiple competing plans, an analysis of various progressive censoring strategies that yield the best performance is conducted. The proposed censoring framework is effectively applied to real-world datasets involving diamonds and gold, demonstrating its practical utility in modeling the reliability and failure behavior of rare and high-value minerals. Full article
(This article belongs to the Special Issue Applications of Bayesian Methods in Statistical Analysis)
Show Figures

Figure 1

19 pages, 1815 KB  
Article
Classical and Bayesian Inference of a Progressive-Stress Model for the Nadarajah–Haghighi Distribution with Type II Progressive Censoring and Different Loss Functions
by Refah Alotaibi, Faten S. Alamri, Ehab M. Almetwally, Min Wang and Hoda Rezk
Mathematics 2022, 10(9), 1602; https://doi.org/10.3390/math10091602 - 8 May 2022
Cited by 8 | Viewed by 3619
Abstract
Accelerated life testing (ALT) is a time-saving technology used in a variety of fields to obtain failure time data for test units in a fraction of the time required to test them under normal operating conditions. This study investigated progressive-stress ALT with progressive [...] Read more.
Accelerated life testing (ALT) is a time-saving technology used in a variety of fields to obtain failure time data for test units in a fraction of the time required to test them under normal operating conditions. This study investigated progressive-stress ALT with progressive type II filtering with the lifetime of test units following a Nadarajah–Haghighi (NH) distribution. It is assumed that the scale parameter of the distribution obeys the inverse power law. The maximum likelihood estimates and estimated confidence intervals for the model parameters were obtained first. The Metropolis–Hastings (MH) algorithm was then used to build Bayes estimators for various squared error loss functions. We also computed the highest posterior density (HPD) credible ranges for the model parameters. Monte Carlo simulations were used to compare the outcomes of the various estimation methods proposed. Finally, one data set was analyzed for validation purposes. Full article
(This article belongs to the Special Issue Recent Advances in Computational Statistics)
Show Figures

Figure 1

22 pages, 957 KB  
Article
Bayesian and Classical Inference under Type-II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering Applications
by Ahmed Elshahhat, Hassan M. Aljohani and Ahmed Z. Afify
Entropy 2021, 23(12), 1578; https://doi.org/10.3390/e23121578 - 26 Nov 2021
Cited by 15 | Viewed by 2428
Abstract
In this article, we introduce a new three-parameter distribution called the extended inverse-Gompertz (EIGo) distribution. The implementation of three parameters provides a good reconstruction for some applications. The EIGo distribution can be seen as an extension of the inverted exponential, inverse Gompertz, and [...] Read more.
In this article, we introduce a new three-parameter distribution called the extended inverse-Gompertz (EIGo) distribution. The implementation of three parameters provides a good reconstruction for some applications. The EIGo distribution can be seen as an extension of the inverted exponential, inverse Gompertz, and generalized inverted exponential distributions. Its failure rate function has an upside-down bathtub shape. Various statistical and reliability properties of the EIGo distribution are discussed. The model parameters are estimated by the maximum-likelihood and Bayesian methods under Type-II censored samples, where the parameters are explained using gamma priors. The performance of the proposed approaches is examined using simulation results. Finally, two real-life engineering data sets are analyzed to illustrate the applicability of the EIGo distribution, showing that it provides better fits than competing inverted models such as inverse-Gompertz, inverse-Weibull, inverse-gamma, generalized inverse-Weibull, exponentiated inverted-Weibull, generalized inverted half-logistic, inverted-Kumaraswamy, inverted Nadarajah–Haghighi, and alpha-power inverse-Weibull distributions. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

Back to TopTop