Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = intraductal administration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4694 KiB  
Article
Thermosensitive Polymeric Nanoparticles for Drug Co-Encapsulation and Breast Cancer Treatment
by Vanessa Franco Carvalho Dartora, Julia S. Passos, Leticia V. Costa-Lotufo, Luciana B. Lopes and Alyssa Panitch
Pharmaceutics 2024, 16(2), 231; https://doi.org/10.3390/pharmaceutics16020231 - 5 Feb 2024
Cited by 4 | Viewed by 2710
Abstract
Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic [...] Read more.
Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague–Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 μg/mL) was substantially higher than in plasma (0.7 ± 0.05 μg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure. Full article
(This article belongs to the Special Issue Nanoparticles for Local Drug Delivery)
Show Figures

Figure 1

15 pages, 9274 KiB  
Review
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury
by Wan-Ting Meng and Hai-Dong Guo
Int. J. Mol. Sci. 2023, 24(5), 4577; https://doi.org/10.3390/ijms24054577 - 26 Feb 2023
Cited by 16 | Viewed by 4914
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction [...] Read more.
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia–reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Heart Diseases)
Show Figures

Figure 1

16 pages, 2779 KiB  
Article
A Non-Invasive Deep Photoablation Technique to Inhibit DCIS Progression and Induce Antitumor Immunity
by Kensuke Kaneko, Hiroshi Nagata, Xiao-Yi Yang, Joshua Ginzel, Zachary Hartman, Jeffrey Everitt, Philip Hughes, Timothy Haystead, Michael Morse, Herbert Kim Lyerly and Takuya Osada
Cancers 2022, 14(23), 5762; https://doi.org/10.3390/cancers14235762 - 23 Nov 2022
Viewed by 2141
Abstract
Ductal carcinoma in situ (DCIS) of the breast is often managed by lumpectomy and radiation or mastectomy, despite its indolent features. Effective non-invasive treatment strategies could reduce the morbidity of DCIS treatment. We have exploited the high heat shock protein 90 (HSP90) activity [...] Read more.
Ductal carcinoma in situ (DCIS) of the breast is often managed by lumpectomy and radiation or mastectomy, despite its indolent features. Effective non-invasive treatment strategies could reduce the morbidity of DCIS treatment. We have exploited the high heat shock protein 90 (HSP90) activity in premalignant and malignant breast disease to non-invasively detect and selectively ablate tumors using photodynamic therapy (PDT). PDT with the HSP90-targeting photosensitizer, HS201, can not only ablate invasive breast cancers (BCs) while sparing non-tumor tissue, but also induce antitumor immunity. We hypothesized that HS201-PDT would both non-invasively ablate DCIS and prevent progression to invasive BC. We tested in vitro selective uptake and photosensitivity of HS201 in DCIS cell lines compared to the non-selective parental verteporfin, and assessed in vivo antitumor efficacy in mammary fat pad and intraductal implantation models. Selective uptake of HS201 enabled treatment of intraductal lesions while minimizing toxicity to non-tumor tissue. The in vivo activity of HS201-PDT was also tested in female MMTV-neu mice prior to the development of spontaneous invasive BC. Mice aged 5 months were administered HS201, and their mammary glands were exposed to laser light. HS201-PDT delayed the emergence of invasive BC, significantly prolonged disease-free survival (DFS) (p = 0.0328) and tended to improve overall survival compared to the no-treatment control (p = 0.0872). Systemic administration of anti-PD-L1 was combined with HS201-PDT and was tested in a more aggressive spontaneous tumor model, HER2delta16 transgenic mice. A single PDT dose combined with anti-PD-L1 improved DFS compared to the no-treatment control, which was significantly improved with repetitive HS201-PDT given with anti-PD-L1 (p = 0.0319). In conclusion, a non-invasive, skin- and tissue-sparing PDT strategy in combination with anti-PD-L1 antibodies effectively prevented malignant progression of DCIS to invasive BC. This non-invasive treatment strategy of DCIS may be safe and effective, while providing an option to reduce the morbidity of current conventional treatment for patients with DCIS. Clinical testing of HS201 is currently underway. Full article
(This article belongs to the Special Issue Advances in Cancer Photomedicine)
Show Figures

Figure 1

23 pages, 2990 KiB  
Article
Phosphatidylcholine-Based Nanoemulsions for Paclitaxel and a P-Glycoprotein Inhibitor Delivery and Breast Cancer Intraductal Treatment
by Giovanna Cassone Salata and Luciana B. Lopes
Pharmaceuticals 2022, 15(9), 1110; https://doi.org/10.3390/ph15091110 - 6 Sep 2022
Cited by 11 | Viewed by 2904
Abstract
In this study, incorporation of the cytotoxic agent paclitaxel and the P-glycoprotein inhibitor elacridar in hyaluronic acid (HA)-modified nanoemulsions was studied for intraductal delivery and breast cancer localized treatment. To improve cytotoxicity, we investigated the incorporation of perillyl alcohol or tributyrin as components [...] Read more.
In this study, incorporation of the cytotoxic agent paclitaxel and the P-glycoprotein inhibitor elacridar in hyaluronic acid (HA)-modified nanoemulsions was studied for intraductal delivery and breast cancer localized treatment. To improve cytotoxicity, we investigated the incorporation of perillyl alcohol or tributyrin as components of the nanoemulsion oil phase. The nanoemulsions presented size <180 nm and negative zeta potential. Both tributyrin and perillyl alcohol increased nanoemulsion cytotoxicity in MCF-7 cells, but not in MDA-MB-231. However, perillyl alcohol reduced nanoemulsion stability in the presence of the drugs. Concomitant incorporation of paclitaxel and elacridar in HA- and tributyrin-containing nanoemulsions (PE-NETri) increased cytotoxicity and reduced IC50 by 1.6 to 3-fold in MCF-7 and MDA-MB-231 cells compared to the nanoemulsion containing only paclitaxel (P-NE). This nanoemulsion also produced a 3.3-fold reduction in the viability of MDA-MB-231 spheroids. Elacridar incorporated in the nanoemulsion was capable of inhibiting P-glycoprotein in membranes. In vivo intraductal administration of the NE containing HA resulted in a three-fold higher retention of a fluorescent marker compared to a solution or nanoemulsion without HA, demonstrating the importance of HA. The nanoemulsion produced no histological changes in the mammary tissue. These results support the potential applicability of the nanoemulsion for local breast cancer management. Full article
(This article belongs to the Special Issue Drug and Gene Delivery Strategies for Breast Cancer Therapy)
Show Figures

Figure 1

23 pages, 7295 KiB  
Article
Fentanyl but Not Morphine or Buprenorphine Improves the Severity of Necrotizing Acute Pancreatitis in Rats
by Emese Réka Bálint, Gabriella Fűr, Balázs Kui, Zsolt Balla, Eszter Sára Kormányos, Erik Márk Orján, Brigitta Tóth, Gyöngyi Horváth, Edina Szűcs, Sándor Benyhe, Eszter Ducza, Petra Pallagi, József Maléth, Viktória Venglovecz, Péter Hegyi, Lóránd Kiss and Zoltán Rakonczay
Int. J. Mol. Sci. 2022, 23(3), 1192; https://doi.org/10.3390/ijms23031192 - 21 Jan 2022
Cited by 10 | Viewed by 6515
Abstract
Opioids are widely used for the pain management of acute pancreatitis (AP), but their impact on disease progression is unclear. Therefore, our aim was to study the effects of clinically relevant opioids on the severity of experimental AP. Various doses of fentanyl, morphine, [...] Read more.
Opioids are widely used for the pain management of acute pancreatitis (AP), but their impact on disease progression is unclear. Therefore, our aim was to study the effects of clinically relevant opioids on the severity of experimental AP. Various doses of fentanyl, morphine, or buprenorphine were administered as pre- and/or post-treatments in rats. Necrotizing AP was induced by the intraperitoneal injection of L-ornithine-HCl or intra-ductal injection of Na-taurocholate, while intraperitoneal caerulein administration caused edematous AP. Disease severity was determined by laboratory and histological measurements. Mu opioid receptor (MOR) expression and function was assessed in control and AP animals. MOR was expressed in both the pancreas and brain. The pancreatic expression and function of MOR were reduced in AP. Fentanyl post-treatment reduced necrotizing AP severity, whereas pre-treatment exacerbated it. Fentanyl did not affect the outcome of edematous AP. Morphine decreased vacuolization in edematous AP, while buprenorphine pre-treatment increased pancreatic edema during AP. The overall effects of morphine on disease severity were negligible. In conclusion, the type, dosing, administration route, and timing of opioid treatment can influence the effects of opioids on AP severity. Fentanyl post-treatment proved to be beneficial in AP. Clinical studies are needed to determine which opioids are best in AP. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop