Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = intracochlear anatomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4562 KiB  
Article
Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region
by Lore Kerkhofs, Anastasiya Starovoyt, Jan Wouters, Tristan Putzeys and Nicolas Verhaert
J. Clin. Med. 2023, 12(1), 238; https://doi.org/10.3390/jcm12010238 - 28 Dec 2022
Cited by 5 | Viewed by 2961
Abstract
Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely [...] Read more.
Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice. Full article
(This article belongs to the Special Issue Innovative Technologies and Translational Therapies for Deafness)
Show Figures

Figure 1

20 pages, 1534 KiB  
Review
Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials
by Shreshtha Dash, Jian Zuo and Peter S. Steyger
Pharmaceuticals 2022, 15(9), 1115; https://doi.org/10.3390/ph15091115 - 7 Sep 2022
Cited by 15 | Viewed by 6798
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood–labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner [...] Read more.
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood–labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear. Full article
(This article belongs to the Special Issue Drug-induced Ototoxicity: Mechanisms and Otoprotective Strategies)
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments
by Flurin Pfiffner, Lukas Prochazka, Ivo Dobrev, Karina Klein, Patrizia Sulser, Dominik Péus, Jae Hoon Sim, Adrian Dalbert, Christof Röösli, Dominik Obrist and Alexander Huber
Sensors 2018, 18(10), 3565; https://doi.org/10.3390/s18103565 - 21 Oct 2018
Cited by 6 | Viewed by 4890
Abstract
(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute [...] Read more.
(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute ICSP measurements in a large animal. The ICAR was designed not only to be used in chronic animal experiments but also as a microphone for totally implantable cochlear implants (TICI). (2) Methods: The ICAR concept was based on a commercial MEMS condenser microphone customized with a protective diaphragm that provided a seal and optimized geometry for accessing the cochlea. The ICAR was validated under laboratory conditions and using in-vivo experiments in sheep. (3) Results: For the first time acute ICSP measurements were successfully performed in a live specimen that is representative of the anatomy and physiology of the human. Data obtained are in agreement with published data from cadavers. The surgeons reported high levels of ease of use and satisfaction with the system design. (4) Conclusions: Our results confirm that the developed ICAR can be used to measure ICSP in acute experiments. The next generation of the ICAR will be used in chronic sheep experiments and in TICI. Full article
(This article belongs to the Special Issue Implantable Sensors 2018)
Show Figures

Figure 1

Back to TopTop