Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = interstage pressure drop equalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 20653 KiB  
Article
A Numerical Study of the Sealing and Interstage Pressure Drop Characteristics of a Four-Tooth Three-Stage Brush Combination Seal
by Chao Gu, Yingqun Ma, Wei Zhao, Xiuming Sui, Bin Hu and Qingjun Zhao
Appl. Sci. 2025, 15(7), 3899; https://doi.org/10.3390/app15073899 - 2 Apr 2025
Viewed by 368
Abstract
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage [...] Read more.
Premature seal failure induced by the unevenness of interstage pressure distribution in multi-stage brush seals significantly compromises the sealing efficiency of Air-Turbo Rocket (ATR) engines operating under high-pressure (megapascal-level) differential conditions. Conventional pressure equalization designs for such seals often result in significant leakage rate increases. This study addresses the pressure imbalance phenomenon in four-tooth three-stage brush composite seals through a novel fractal–geometric porous-media model, rigorously validated against experimental data. Systematic investigations were conducted to elucidate the effects of structural parameters and operational conditions on both sealing performance and pressure distribution characteristics. Key findings reveal that, under the prototype structure parameter, the first-, second-, and third-stage brush bundles account for 18.3%, 30.0%, and 43.3% of the total pressure drop, respectively, with grate teeth contributing 8.4%, demonstrating an inherent pressure imbalance. Axial brush spacing exhibits a minimal impact on the pressure distribution, while the gradient thickness settings of the brush bundles show limited influence. Radial clearance optimization and gradient backplate height adjustment effectively regulate pressure distribution, albeit with associated leakage rate increases. Structural modifications based on these principles achieved only a 5.8% leakage increment while reducing the maximum bundle pressure drop by 23%, demonstrating effective pressure balancing. A simplified analysis of entropy reveals that the fundamental mechanism governing the pressure imbalance stems from non-uniform entropy generation caused by aerodynamic damping dissipation across sequential brush stages. These findings establish a dampened dissipation-based theoretical framework for designing high-performance multistage brush seals in aerospace applications, providing critical insights for achieving an optimal balance between leakage control and pressure equalization in extreme-pressure environments. Full article
Show Figures

Figure 1

29 pages, 14842 KiB  
Article
Study on Interstage Pressure Equalization of Differential Multi-Stage Finger Seal with Structural Design, Flow and Heat Transfer Characteristics
by Juan Wang, Wei Xu, Meihong Liu, Shixing Zhu, Yuchi Kang, Xiaolei Song, Dianhai Gu and Xuefeng Hu
Aerospace 2024, 11(11), 874; https://doi.org/10.3390/aerospace11110874 - 24 Oct 2024
Viewed by 970
Abstract
To effectively address the issue of premature failure caused by the unbalanced distribution of pressure drops between the stages of a traditional two-stage finger seal, this study proposes a method to improve the pressure drop balance by increasing the protection height of the [...] Read more.
To effectively address the issue of premature failure caused by the unbalanced distribution of pressure drops between the stages of a traditional two-stage finger seal, this study proposes a method to improve the pressure drop balance by increasing the protection height of the second stage back plate. We established a new numerical calculation model for a two-stage finger seal, based on the porous media model. After verifying the precision of the model, we conducted a numerical analysis to examine the impact of the protection height of the second stage back plate on the flow and heat transfer characteristics of the two-stage finger seal. We then conducted a differentiated structural design for each stage of the two-stage finger seal. The research results are as follows: the pressure drop at the second stage of the traditional two-stage finger seal exceeds that of the first stage; when the protection height of the second stage back plate of the traditional two-stage finger seal is increased from 1.5 mm to 1.57 mm, forming a two-stage pressure equalizing finger seal structure, the pressure drop between the two stages is balanced, but the leakage is greater than that of the traditional two-stage finger seal; a grate seal structure was arranged between the first and second stages of the two-stage pressure equalizing finger seal to form a two-stage pressure equalizing finger seal with grate teeth, which exhibits significantly lower leakage compared to the two-stage pressure equalizing finger seal. However, the proportion of pressure drop at the first and second stages of the two-stage pressure equalizing finger seal is 36.8% and 42.1%, respectively, while the grate tooth stage accounts for 21.1%, resulting in an imbalanced pressure drop once again. Increasing the protection height of the second stage back plate in the two-stage pressure equalizing finger seal with grate teeth to 1.6 mm results in a 37.5% pressure drop at the first and second stages, and a 25% pressure drop at the grate tooth stage. The two-stage finger seal balances the pressure drop and matches the leakage of the traditional two-stage finger seal. The maximum temperatures of the first and second stages of the finger seal are 0.7% lower and 2.6% higher compared to the traditional two-stage finger seal. This suggests that a differential multi-stage finger seal is the optimal structure. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop