Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = interspecies somatic cell nuclear transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9589 KB  
Review
The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives
by Peachanika Pankammoon, Marvin Bryan Segundo Salinas, Chatchote Thitaram and Anucha Sathanawongs
Int. J. Mol. Sci. 2025, 26(7), 3310; https://doi.org/10.3390/ijms26073310 - 2 Apr 2025
Viewed by 2723
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome [...] Read more.
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation. Full article
Show Figures

Figure 1

12 pages, 30572 KB  
Article
Morphokinetic Analyses of Fishing Cat–Domestic Cat Interspecies Somatic Cell Nuclear Transfer Embryos Through A Time-Lapse System
by Hai-Jun Liu, Serena Jocelyn Wai Yin Oh, Nicole Liling Tay, Christina Yingyan Lim, Chia-Da Hsu, Delia Hwee Hoon Chua, Winnie Koon Lay Teo, Yuin-Han Loh and Soon Chye Ng
Animals 2025, 15(2), 148; https://doi.org/10.3390/ani15020148 - 9 Jan 2025
Viewed by 1863
Abstract
A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate [...] Read more.
A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate the morphokinetic parameters of fishing cat–domestic cat interspecies somatic cell nuclear transfer (iSCNT) embryos from one-cell to blastocyst stages, and in particular, the cleavage patterns of the first division in iSCNT and IVF embryos, as these play a central role in euploidy. Domestic cat in vitro fertilization (IVF) embryos were set up as controls. The results show that morula and blastocyst development rates were significantly lower in the iSCNT embryos compared to their IVF counterparts. All earlier time points of embryonic development before the onset of blastulation in the iSCNT embryos were significantly delayed when compared with their IVF counterparts. In iSCNT, normal embryos (defined as those that developed to the blastocyst stage) took a longer time to reach the morula stage, and these morulas were more likely to undergo compaction, compared to their arrested embryo counterparts. Direct cleavage in the first division is a morphological aberration, and was seen with greater prevalence in iSCNT embryos than control IVF embryos; these aberrant embryos displayed a significantly lower blastocyst development rate than embryos that had undergone normal cleavage. In conclusion, the morphokinetic parameters of fishing cat–domestic cat iSCNT embryos at early stages could be used to predict their potential for development to the blastocyst stage. A time-lapse imaging system is potentially a powerful tool for selecting early embryos with developmental potential for transfer, and hence, for improving feline iSCNT efficiency. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

10 pages, 1077 KB  
Article
Interspecific Nuclear Transfer Blastocysts Reconstructed from Arabian Oryx Somatic Cells and Domestic Cow Ooplasm
by Aiman A. Ammari, Muath G. ALGhadi, Ramzi A. Amran, Nawal M. Al Malahi and Ahmad R. Alhimaidi
Vet. Sci. 2023, 10(1), 17; https://doi.org/10.3390/vetsci10010017 - 28 Dec 2022
Cited by 3 | Viewed by 2964
Abstract
Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific SCNT technology to clone the Arabian Oryx utilizing the oryx’s fibroblast cells [...] Read more.
Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific SCNT technology to clone the Arabian Oryx utilizing the oryx’s fibroblast cells and transfer it to the enucleated oocytes of a domestic cow. The recipient oocytes were extracted from the cows that had been butchered. Oryx somatic nuclei were introduced into cow oocytes to produce embryonic cells. The study was conducted on three groups, Oryx interspecific somatic cell nuclear transfer into enucleated oocytes of domestic cows, cow SCNT “the same bovine family species”, used as a control group, and in vitro fertilized (IVF) cows to verify all media used in this work. The rates of different embryo developmental stages varied slightly (from 1- cell to morula stage). Additionally, the oryx interspecies Somatic cell nuclear transfer blastocyst developmental rate (9.23%) was comparable to that of cow SCNT (8.33%). While the blastula stage rate of the (IVF) cow embryos exhibited a higher cleavage rate (42%) in the embryo development stage. The results of this study enhanced domestic cow oocytes’ ability to support interspecific SCNT cloned oryx, and generate a viable embryo that can advance to the blastula stage. Full article
Show Figures

Figure 1

5 pages, 235 KB  
Editorial
Molecular Mechanism and Application of Somatic Cell Cloning in Mammals—Past, Present and Future
by Marcin Samiec
Int. J. Mol. Sci. 2022, 23(22), 13786; https://doi.org/10.3390/ijms232213786 - 9 Nov 2022
Cited by 16 | Viewed by 2948
Abstract
Thus far, nearly 25 mammalian species have been cloned by intra- or interspecies somatic cell nuclear transfer (SCNT) [...] Full article
17 pages, 6888 KB  
Article
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos
by Shanshan Wu, Xiaoyu Zhao, Meiling Wu, Lei Yang, Xuefei Liu, Danyi Li, Han Xu, Yuefang Zhao, Xiaohu Su, Zhuying Wei, Chunling Bai, Guanghua Su and Guangpeng Li
Int. J. Mol. Sci. 2022, 23(17), 10145; https://doi.org/10.3390/ijms231710145 - 4 Sep 2022
Cited by 7 | Viewed by 2594
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial [...] Read more.
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop