Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = intermolecular C–H∙∙∙Ni interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5942 KB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Cited by 2 | Viewed by 1299
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

16 pages, 6464 KB  
Article
Prospects on Mixed Tutton Salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 as a Thermochemical Heat Storage Material
by Jacivan V. Marques, João G. de Oliveira Neto, Otávio C. da Silva Neto, Adenilson O. dos Santos and Rossano Lang
Processes 2025, 13(1), 1; https://doi.org/10.3390/pr13010001 - 24 Dec 2024
Cited by 11 | Viewed by 1693
Abstract
In this paper, a novel mixed Tutton salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 was successfully synthesized as a single crystal and evaluated as a thermochemical heat storage material. Its thermal and thermochemical properties were [...] Read more.
In this paper, a novel mixed Tutton salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 was successfully synthesized as a single crystal and evaluated as a thermochemical heat storage material. Its thermal and thermochemical properties were correlated with the structure, which was determined by powder X-ray diffraction using the Le Bail and Rietveld methods. The elemental ratio between the K+ and Na+ monovalent cations was established by energy-dispersive X-ray spectroscopy. Similar compounds such as Na2Ni(SO4)2(H2O)4 and K2Ni(SO4)2(H2O)6 were also synthesized and used for structural comparisons. The (K0.86Na0.14)2Ni(SO4)2(H2O)6 salt crystallizes in monoclinic symmetry with the P21/c-space group, typical of hexahydrate crystals from the Tutton salt family. The lattice parameters closely resemble those of K2Ni(SO4)2(H2O)6. A comprehensive analysis of the intermolecular contacts, based on Hirshfeld surfaces and 2D fingerprint mappings, revealed that the primary interactions are hydrogen bonds (H···O/O···H) and ion-dipole interactions (K/Na···O/O···Na/K). The unit cell exhibits minimal void space, accounting for only 0.2%, indicative of strong atomic packing. The intermolecular molecular and atomic packing are important factors influencing crystal lattice stabilization and thermal energy supplied to release crystallographic H2O. The thermal stability of mixed Tutton salt ranges from 300 K to 365 K. Under the dehydration of its six H2O molecules, the dehydration reaction enthalpy reaches 349.8 kJ/mol, yielding a thermochemical energy storage density of 1.79 GJ/m3. With an H2O desorption temperature ≤393 K and a high energy storage density ≥1.3 GJ/m3 (criteria established for applications at the domestic level), the (K0.86Na0.14)2Ni(SO4)2(H2O)6 shows potential as a thermochemical material for small-sized heat batteries. Full article
Show Figures

Figure 1

15 pages, 4257 KB  
Article
Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials
by João G. de Oliveira Neto, Jacivan V. Marques, Jayson C. dos Santos, Adenilson O. dos Santos and Rossano Lang
Physchem 2024, 4(3), 319-333; https://doi.org/10.3390/physchem4030022 - 26 Aug 2024
Cited by 6 | Viewed by 2507
Abstract
Tutton salts form an isomorphic crystallographic family that has been intensively investigated in recent decades due to their attractive thermal and optical properties. In this work, we report four mixed Tutton crystals (obtained by the slow solvent evaporation method) with novel chemical compositions [...] Read more.
Tutton salts form an isomorphic crystallographic family that has been intensively investigated in recent decades due to their attractive thermal and optical properties. In this work, we report four mixed Tutton crystals (obtained by the slow solvent evaporation method) with novel chemical compositions based on K2V1−xM’x(SO4)2(H2O)6, where M’ represents Co, Ni, Cu, and Zn, aiming at thermochemical energy storage applications. Their structural and thermal properties were correlated with theoretical studies. The crystal structures were solved by powder X-ray diffraction using the Rietveld method with similar compounds. All of the samples crystallized in monoclinic symmetry with the P21/a-space group. A detailed study of the intermolecular interactions based on Hirshfeld surfaces and 2D fingerprint mappings showed that the main interactions arise from hydrogen bonds (H∙∙∙O/O∙∙∙H) and dipole–ion (K∙∙∙O/O∙∙∙K). On the other hand, free space percentages in the unit cells determined by electron density isosurfaces presented low values ranging from 0.53 (V–Ni) to 0.81% (V–Cu). The thermochemical findings from thermogravimetry, a differential thermal analysis, and differential scanning calorimetry indicate that K2V0.47Ni0.53(SO4)2(H2O)6 salt is the most promising among mixed salts (K2V1−xM’x(SO4)2(H2O)6) for heat storage potential, achieving a low dehydration temperature (≈85 °C), high dehydration enthalpy (≈360 kJ/mol), and high energy storage density (≈1.84 GJ/m3). Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Figure 1

18 pages, 4637 KB  
Article
Synthesis and Characterization of Multiple Stimuli-Responsive Fluorescent Polymer Hydrogels Based on Terpyridine and N-Isopropylacrylamide
by Zihan Ma, Longhao Zhao, Chunhua Xie, Xianjian Wang, Ziyuan He and Xuegang Chen
Polymers 2024, 16(11), 1519; https://doi.org/10.3390/polym16111519 - 28 May 2024
Cited by 2 | Viewed by 1968
Abstract
A series of stimuli-responsive fluorescent hydrogels were successfully synthesized via micelle radical copolymerization of hydrophilic acrylamide (AM), hydrophobic chromophore terpyridine-based monomer (TPY), and N-isopropylacrylamide (NIPAM). These hydrogels presented blue emissions (423–440 nm) under room temperature, which is caused by the π-π* transition [...] Read more.
A series of stimuli-responsive fluorescent hydrogels were successfully synthesized via micelle radical copolymerization of hydrophilic acrylamide (AM), hydrophobic chromophore terpyridine-based monomer (TPY), and N-isopropylacrylamide (NIPAM). These hydrogels presented blue emissions (423–440 nm) under room temperature, which is caused by the π-π* transition of the conjugated structures. Once the ambient temperature was increased to 55 °C, the fluorescence color changed from blue (430 nm) to pink (575 nm) within 10 min, subsequently to yellow (535 nm), and eventually back to pink. The thermal-responsive properties are attributed to the transition of the TPY units from unimer to dimer aggregation via the intermolecular charge transfer complex at high temperatures. The hydrogels showed pH-responsive properties. The emission peak of the hydrogel exhibited a blue shift of ~54 nm from neuter conditions to acidic conditions, while a 6 nm red shift to an alkaline environment was observed. The hydrogels demonstrated an obvious change in fluorescence intensity and wavelength upon adding different metal ions, which is caused by the coordination between the terpyridine units incorporated on the backbones and the metal ions. As a consequence, the hydrogels presented a sharp quenching fluorescence interaction with Fe2+, Fe3+, Cu2+, Hg2+, Ni2+, and Co2+, while it exhibited an enhanced fluorescence intensity interaction with Sn2+, Cd2+, and Zn2+. The microstructural, mechanical, and rheological properties of these luminescent hydrogels have been systematically investigated. Full article
(This article belongs to the Special Issue Applications of Polymer-Based Absorbent Materials)
Show Figures

Figure 1

22 pages, 13623 KB  
Article
Efficient Production of Segmented Carbon Nanofibers via Catalytic Decomposition of Trichloroethylene over Ni-W Catalyst
by Arina R. Potylitsyna, Yuliya V. Rudneva, Yury I. Bauman, Pavel E. Plyusnin, Vladimir O. Stoyanovskii, Evgeny Y. Gerasimov, Aleksey A. Vedyagin, Yury V. Shubin and Ilya V. Mishakov
Materials 2023, 16(2), 845; https://doi.org/10.3390/ma16020845 - 15 Jan 2023
Cited by 10 | Viewed by 2446
Abstract
The catalytic utilization of chlorine-organic wastes remains of extreme importance from an ecological point of view. Depending on the molecular structure of the chlorine-substituted hydrocarbon (presence of unsaturated bonds, intermolecular chlorine-to-hydrogen ratio), the features of its catalytic decomposition can be significantly different. Often, [...] Read more.
The catalytic utilization of chlorine-organic wastes remains of extreme importance from an ecological point of view. Depending on the molecular structure of the chlorine-substituted hydrocarbon (presence of unsaturated bonds, intermolecular chlorine-to-hydrogen ratio), the features of its catalytic decomposition can be significantly different. Often, 1,2-dichloroethane is used as a model substrate. In the present work, the catalytic decomposition of trichloroethylene (C2HCl3) over microdispersed 100Ni and 96Ni-4W with the formation of carbon nanofibers (CNF) was studied. Catalysts were obtained by a co-precipitation of complex salts followed by reductive thermolysis. The disintegration of the initial bulk alloy driven by its interaction with the reaction mixture C2HCl3/H2/Ar entails the formation of submicron active particles. It has been established that the optimal activity of the pristine Ni catalyst and the 96Ni-4W alloy is provided in temperature ranges of 500–650 °C and 475–725 °C, respectively. The maximum yield of CNF for 2 h of reaction was 63 g/gcat for 100Ni and 112 g/gcat for 96Ni-4W catalyst. Longevity tests showed that nickel undergoes fast deactivation (after 3 h), whereas the 96Ni-4W catalyst remains active for 7 h of interaction. The effects of the catalyst’s composition and the reaction temperature upon the structural and morphological characteristics of synthesized carbon nanofibers were investigated by X-ray diffraction analysis, Raman spectroscopy, and electron microscopies. The initial stages of the carbon erosion process were precisely examined by transmission electron microscopy coupled with elemental mapping. The segmented structure of CNF was found to be prevailing in a range of 500–650 °C. The textural parameters of carbon product (SBET and Vpore) were shown to reach maximum values (374 m2/g and 0.71 cm3/g, respectively) at the reaction temperature of 550 °C. Full article
(This article belongs to the Special Issue Advanced Materials in Catalysis and Adsorption)
Show Figures

Figure 1

21 pages, 2412 KB  
Article
Biomedical Applications of Thermosensitive Hydrogels for Controlled/Modulated Piroxicam Delivery
by Snežana Ilić-Stojanović, Ljubiša Nikolić, Vesna Nikolić, Ivan Ristić, Suzana Cakić and Slobodan D. Petrović
Gels 2023, 9(1), 70; https://doi.org/10.3390/gels9010070 - 15 Jan 2023
Cited by 13 | Viewed by 3340
Abstract
The objectives of this study are the synthesis of thermosensitive poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate), p(NiPAm-HPMet), hydrogels and the analysis of a drug-delivery system based on piroxicam, as a model drug, and synthesized hydrogels. A high pressure liquid chromatography method has been [...] Read more.
The objectives of this study are the synthesis of thermosensitive poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate), p(NiPAm-HPMet), hydrogels and the analysis of a drug-delivery system based on piroxicam, as a model drug, and synthesized hydrogels. A high pressure liquid chromatography method has been used in order to determine both qualitative and quantitative amounts of unreacted monomers and crosslinkers from polymerized hydrogels. Swelling kinetics and the order of a swelling process of the hydrogels have been analyzed at 10 and 40 °C. The copolymers’ thermal properties have been monitored by the differential scanning calorimetry (DSC) method. DSC termograms have shown that melting occurs in two temperature intervals (142.36–150.72 °C and 153.14–156.49 °C). A matrix system with incorporated piroxicam has been analyzed by using FTIR and SEM methods. Structural analysis has demonstrated that intermolecular non-covalent interactions have been built between side-groups of copolymer and loaded piroxicam. Morphology of p(NiPAm-HPMet) after drug incorporation indicates the piroxicam presence into the copolymer pores. Kinetic parameters of the piroxicam release from hydrogels at 37 °C and pH 7.4 indicate that the fluid transport mechanism corresponds to Fickian diffusion. As a result, formulation of thermosensitive p(NiPAm-HPMet) hydrogels with incorporated piroxicam could be of interest for further testing as a drug carrier for modulated and prolonged release, especially for topical administration. Full article
(This article belongs to the Special Issue Hydrogels as Controlled Drug Delivery Systems)
Show Figures

Graphical abstract

11 pages, 8052 KB  
Article
Three for the Price of One: Concomitant I⋯N, I⋯O, and I⋯π Halogen Bonds in the Same Crystal Structure
by Steven van Terwingen, Ruimin Wang and Ulli Englert
Molecules 2022, 27(21), 7550; https://doi.org/10.3390/molecules27217550 - 3 Nov 2022
Cited by 5 | Viewed by 4287
Abstract
The ditopic molecule 3-(1,3,5-trimethyl-1H-4-pyrazolyl)pentane-2,4-dione (HacacMePz) combines two different Lewis basic sites. It forms a crystalline adduct with the popular halogen bond (XB) donor 2,3,5,6-tetrafluoro-1,4-diiodobenzene (TFDIB) with a HacacMePz:TFDIB ratio of 2:3. In a simplified picture, the topology of the adduct corresponds [...] Read more.
The ditopic molecule 3-(1,3,5-trimethyl-1H-4-pyrazolyl)pentane-2,4-dione (HacacMePz) combines two different Lewis basic sites. It forms a crystalline adduct with the popular halogen bond (XB) donor 2,3,5,6-tetrafluoro-1,4-diiodobenzene (TFDIB) with a HacacMePz:TFDIB ratio of 2:3. In a simplified picture, the topology of the adduct corresponds to a hcb net. In addition to the expected acetylacetone keto O and pyrazole N acceptor sites, a third and less common short contact to a TFDIB iodine is observed: The acceptor site is again the most electron-rich site of the pyrazole π-system. This iminic N atom is thus engaged as the acceptor in two orthogonal halogen bonds. Evaluation of the geometric results and of a single-point calculation agree with respect to the strength of the intermolecular contacts: The conventional N⋯I XB is the shortest (2.909(4) Å) and associated with the highest electron density (0.150 eÅ3) in the bond critical point (BCP), followed by the O⋯I contact (2.929(3) Å, 0.109 eÅ3), and the π contact (3.2157(3) Å, 0.075 eÅ3). If one accepts the idea of deducing interaction energies from energy densities at the BCP, the short contacts also follow this sequence. Two more criteria identify the short N⋯I contact as the most relevant: The associated C–I bond is significantly longer than the database average, and it is the only intermolecular interaction with a negative total energy density in the BCP. Full article
(This article belongs to the Special Issue Chemical Bond and Intermolecular Interactions)
Show Figures

Graphical abstract

21 pages, 5085 KB  
Article
The Coordination Behavior of Two New Complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2] (II), Based on 2,6-Dimethanolpyridine; Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analysis
by Sabrine Hermi, Abdullah A. Alotaibi, Abdullah M. Alswieleh, Khalid M. Alotaibi, M. G. Althobaiti, Christian Jelsch, Emmanuel Wenger, Cherif Ben Nasr and Mohamed Habib Mrad
Materials 2022, 15(5), 1624; https://doi.org/10.3390/ma15051624 - 22 Feb 2022
Cited by 15 | Viewed by 3143
Abstract
Two novel complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2],havebeen synthesized and characterized. Single crystal X-ray diffraction revealed that in compound (I), 2,6-dimethanol pyridinium acts as a monodentate ligand [...] Read more.
Two novel complexes, [(C7H10NO2)CdCl3]n(I) and [(C7H9NO2)CuCl2],havebeen synthesized and characterized. Single crystal X-ray diffraction revealed that in compound (I), 2,6-dimethanol pyridinium acts as a monodentate ligand through the O atom of the hydroxyl group. Contrarily, the 2,6-dimethanol pyridine ligand interacts tridentately with the Cu(II) ion via the nitrogen atoms and the two oxygen (O, O’) atoms of the two hydroxyl groups. The structure’s intermolecular interactions were studied using contact enrichment ratios and Hirshfeld surfaces. Following metal coordination, numerous hydrogen connections between entities and parallel displacement stacking interactions between pyridine rings dictate the crystal packing of both compounds. The aromatic cycles generate layers in the crystal for both substances. Powder XRD measurements confirmed the crystalline sample phase purity. SEM confirmed the surface homogeneity, whereas EDX semi-quantitative analysis corroborated the composition. IR spectroscopy identified vibrational absorption bands, while optical UV-visible absorption spectroscopy investigated optical properties. The thermal stability of the two materials was tested using TG-DTA. Full article
Show Figures

Figure 1

20 pages, 9549 KB  
Article
Solvent-Induced Formation of Novel Ni(II) Complexes Derived from Bis-Thiosemicarbazone Ligand: An Insight from Experimental and Theoretical Investigations
by Ghodrat Mahmoudi, Maria G. Babashkina, Waldemar Maniukiewicz, Farhad Akbari Afkhami, Bharath Babu Nunna, Fedor I. Zubkov, Aleksandra L. Ptaszek, Dariusz W. Szczepanik, Mariusz P. Mitoraj and Damir A. Safin
Int. J. Mol. Sci. 2021, 22(10), 5337; https://doi.org/10.3390/ijms22105337 - 19 May 2021
Cited by 10 | Viewed by 4013 | Correction
Abstract
In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed [...] Read more.
In this work, we report solvent-induced complexation properties of a new N2S2 tetradentate bis-thiosemicarbazone ligand (H2LI), prepared by the condensation of 4-phenylthiosemicarbazide with bis-aldehyde, namely 2,2’-(ethane-1,2-diylbis(oxy)dibenzaldehyde, towards nickel(II). Using ethanol as a reaction medium allowed the isolation of a discrete mononuclear homoleptic complex [NiLI] (1), for which its crystal structure contains three independent molecules, namely 1-I, 1-II, and 1-III, in the asymmetric unit. The doubly deprotonated ligand LI in the structure of 1 is coordinated in a cis-manner through the azomethine nitrogen atoms and the thiocarbonyl sulfur atoms. The coordination geometry around metal centers in all the three crystallographically independent molecules of 1 is best described as the seesaw structure. Interestingly, using methanol as a reaction medium in the same synthesis allowed for the isolation of a discrete mononuclear homoleptic complex [Ni(LII)2] (2), where LII is a monodeprotonated ligand 2-(2-(2-(2-(dimethoxymethyl)phenoxy)ethoxy)benzylidene)-N-phenylhydrazine-1-carbothioamide (HLII). The ligand LII was formed in situ from the reaction of LI with methanol upon coordination to the metal center under synthetic conditions. In the structure of 2, two ligands LII are coordinated in a trans-manner through the azomethine nitrogen atom and the thiocarbonyl sulfur atom, also yielding a seesaw coordination geometry around the metal center. The charge and energy decomposition scheme ETS-NOCV allows for the conclusion that both structures are stabilized by a bunch of London dispersion-driven intermolecular interactions, including predominantly N–H∙∙∙S and N–H∙∙∙O hydrogen bonds in 1 and 2, respectively; they are further augmented by less typical C–H∙∙∙X (where X = S, N, O, π), CH∙∙∙HC, π∙∙∙π stacking and the most striking, attractive long-range intermolecular C–H∙∙∙Ni preagostic interactions. The latter are found to be determined by both stabilizing Coulomb forces and an exchange-correlation contribution as revealed by the IQA energy decomposition scheme. Interestingly, the analogous long-range C–H∙∙∙S interactions are characterized by a repulsive Coulomb contribution and the prevailing attractive exchange-correlation constituent. The electron density of the delocalized bonds (EDDB) method shows that the nickel(II) atom shares only ~0.8|e| due to the σ-conjugation with the adjacent in-plane atoms, demonstrating a very weak σ-metalloaromatic character. Full article
(This article belongs to the Special Issue Advances in Chemical Bond and Bonding)
Show Figures

Figure 1

16 pages, 3861 KB  
Article
Synthesis, Molecular and Supramolecular Structures of New Cd(II) Pincer-Type Complexes with s-Triazine Core Ligand
by Saied M. Soliman, Zainab Almarhoon and Ayman El-Faham
Crystals 2019, 9(5), 226; https://doi.org/10.3390/cryst9050226 - 27 Apr 2019
Cited by 20 | Viewed by 3167
Abstract
The manuscript described the synthesis and characterization of the new [Cd(BDMPT)2](ClO4)2; 1 and [Cd2(MBPT)2(H2O)2Cl](ClO4)3.4H2O; 2 s-triazine pincer-type complexes, where BDMPT and MBPT [...] Read more.
The manuscript described the synthesis and characterization of the new [Cd(BDMPT)2](ClO4)2; 1 and [Cd2(MBPT)2(H2O)2Cl](ClO4)3.4H2O; 2 s-triazine pincer-type complexes, where BDMPT and MBPT are 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine and 2-methoxy-4,6-bis(2-(pyridin-2-ylmsethylene)hydrazinyl)-1,3,5-triazine respectively. The synthesized complexes were characterized using Fourier-transform infrared spectroscopy (FTIR), 1H and 13C NMR spectroscopy, and the single-crystal X-ray diffraction technique. The homoleptic mononuclear complex (1) contains a hexa-coordinated Cd(II) center with two tridentate N-pincer ligand (BDMPT) with a highly distorted octahedral coordination environment located as an intermediate case between the octahedron and trigonal prism. The heteroleptic dinuclear complex (2) contains two hepta-coordinated Cd(II) coordination spheres where each Cd(II) is coordinated with one pentadentate pincer N-chelate (MBPT), one water, and one bridged chloride ligand connecting the two metal ions. The different intermolecular interactions in the studied complexes were quantified using Hirshfeld analysis. Their thermal stabilities and FTIR spectra were compared with the corresponding free ligands. The strength and nature of Cd–N, Cd–O, and Cd–Cl coordination interactions were discussed in light of atoms in molecules calculations (AIM). The M(II)–BDMPT and M(II)–MBPT interaction energies revealed that such sterically hindered ligands have higher affinity toward large-size metal ions (M = Cd) compared to smaller ones (M = Ni or Mn). Full article
Show Figures

Figure 1

Back to TopTop