Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = interfacial heat transfer coefficient (IHTC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2743 KB  
Article
Axial Solidification Experiments to Mimic Net-Shaped Castings of Aluminum Alloys—Interfacial Heat-Transfer Coefficient and Thermal Diffusivity
by Ravi Peri, Ahmed M. Teamah, Xiaochun Zeng, Mohamed S. Hamed and Sumanth Shankar
Processes 2026, 14(1), 128; https://doi.org/10.3390/pr14010128 (registering DOI) - 30 Dec 2025
Abstract
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the [...] Read more.
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the necessary real-time estimation of thermophysical properties (thermal diffusivity and thermal conductivity) and the interfacial heat-transfer coefficient (IHTC) to evaluate the thermal resistances in a casting process and solve the temperature in the solidifying domain. To address these shortcomings, an axial directional solidification experiment setup was developed to map the thermal data as the melt solidifies unidirectionally from the chill surface under unsteady-state conditions. A Dilute Eutectic Cast Aluminum (DECA) alloy, Al-5Zn-1Mg-1.2Fe-0.07Ti, Eutectic Cast Aluminum (ECA) alloys (A365 and A383), and pure Al (P0303) were used to demonstrate the validity of the experiments to evaluate the thermal diffusivity (α) of both the solid and liquid phases of the solidifying metal using an inverse heat-transfer analysis (IHTA). The thermal diffusivity varied from 0.2 to 1.9 cm2/s while the IHTC changed from 9500 to 200 W/m2K for different alloys in the solid and liquid phases. The heat flux was estimated from the chill side with transient temperature distributions estimated from IHTA for either side of the mold–metal interface as an input to compute the interfacial heat-transfer coefficient (IHTC). The results demonstrate the reliability of the axial solidification experiment apparatus in accurately providing input to the casting simulation software and aid in reproducing casting numerical simulation models efficiently. Full article
Show Figures

Figure 1

21 pages, 2703 KB  
Article
Experimental and Numerical Replication of Thermal Conditions in High-Pressure Die-Casting Process
by Abdelfatah M. Teamah, Ahmed M. Teamah, Mohamed S. Hamed and Sumanth Shankar
Processes 2025, 13(12), 3815; https://doi.org/10.3390/pr13123815 - 25 Nov 2025
Viewed by 429
Abstract
Acquiring reliable thermal data during the high-pressure die-casting (HPDC) process remains a significant challenge due to its complexity and rapidly evolving thermal environment. In industrial settings, the influence of process parameters is typically evaluated after solidification by examining the final casting quality, as [...] Read more.
Acquiring reliable thermal data during the high-pressure die-casting (HPDC) process remains a significant challenge due to its complexity and rapidly evolving thermal environment. In industrial settings, the influence of process parameters is typically evaluated after solidification by examining the final casting quality, as direct temperature measurements within the die during operation are difficult to obtain. Additionally, most casting simulation tools lack accurate correlations for the interfacial heat transfer coefficient (IHTC) as a function of process parameters. To address this limitation, a laboratory-scale hot chamber die-casting (HCDC) apparatus was developed to replicate the fluid flow and the thermal conditions of industrial HPDC operation while enabling direct thermal measurements inside the die cavity using embedded thermocouples. The molten metal temperature was estimated using the lumped capacitance method, and the IHTC was determined through a custom inverse heat conduction algorithm incorporating an adaptive forward time-stepping scheme. This algorithm was validated by solving the forward heat conduction problem using the ANSYS 2025 R1 Transient Thermal solver. The experimentally obtained IHTC values showed good agreement with those measured during industrial HPDC trials, with a maximum deviation of about 14% in the peak value, while the full width at half maximum (FWHM) differed by less than 12%. These results confirm that the developed HCDC setup can reliably reproduce industrial thermal conditions and generate high-quality thermal data that can be used in numerical casting simulations. Full article
Show Figures

Figure 1

Back to TopTop