Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

remove_circle_outline

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = instellation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 626 KiB  
Proceeding Paper
Improving Inferences about Exoplanet Habitability
by Risinie D. Perera and Kevin H. Knuth
Phys. Sci. Forum 2023, 9(1), 7; https://doi.org/10.3390/psf2023009007 - 27 Nov 2023
Cited by 1 | Viewed by 1246
Abstract
Assessing the habitability of exoplanets (planets orbiting other stars) is of great importance in deciding which planets warrant further careful study. Planets in the habitable zones of stars like our Sun are sufficiently far away from the star so that the light rays [...] Read more.
Assessing the habitability of exoplanets (planets orbiting other stars) is of great importance in deciding which planets warrant further careful study. Planets in the habitable zones of stars like our Sun are sufficiently far away from the star so that the light rays from the star can be assumed to be parallel, leading to straightforward analytic models for stellar illumination of the planet’s surface. However, for planets in the close-in habitable zones of dim red dwarf stars, such as the potentially habitable planet orbiting our nearest stellar neighbor, Proxima Centauri, the analytic illumination models based on the parallel ray approximation do not hold, resulting in severe biases in the estimates of the planetary characteristics, thus impacting efforts to understand the planet’s atmosphere and climate. In this paper, we present our efforts to improve the instellation (stellar illumination) models for close-in orbiting planets and the significance of the implementation of these improved models into EXONEST, which is a Bayesian machine learning application for exoplanet characterization. The ultimate goal is to use these improved models and parameter estimates to model the climates of close-in orbiting exoplanets using planetary General Circulation Models (GCM). More specifically, we are working to apply our instellation corrections to the NASA ROCKE-3D GCM to study the climates of the potentially habitable planets in the Trappist-1 system. Full article
Show Figures

Figure 1

15 pages, 3213 KiB  
Technical Note
PROBA-V Mission Exploitation Platform
by Erwin Goor, Jeroen Dries, Dirk Daems, Martine Paepen, Fabrizio Niro, Philippe Goryl, Philippe Mougnaud and Andrea Della Vecchia
Remote Sens. 2016, 8(7), 564; https://doi.org/10.3390/rs8070564 - 2 Jul 2016
Cited by 13 | Viewed by 7131
Abstract
As an extension of the PROBA-Vegetation (PROBA-V) user segment, the European Space Agency (ESA), de Vlaamse Instelling voor Technologisch Onderzoek (VITO), and partners TRASYS and Spacebel developed an operational Mission Exploitation Platform (MEP) to drastically improve the exploitation of the PROBA-V Earth Observation [...] Read more.
As an extension of the PROBA-Vegetation (PROBA-V) user segment, the European Space Agency (ESA), de Vlaamse Instelling voor Technologisch Onderzoek (VITO), and partners TRASYS and Spacebel developed an operational Mission Exploitation Platform (MEP) to drastically improve the exploitation of the PROBA-V Earth Observation (EO) data archive, the archive from the historical SPOT-VEGETATION mission, and derived products by researchers, service providers, and thematic users. The analysis of the time series of data (petabyte range) is addressed, as well as the large scale on-demand processing of the complete archive, including near real-time data. The platform consists of a private cloud environment, a Hadoop-based processing environment and a data manager. Several applications are released to the users, e.g., a full resolution viewing service, a time series viewer, pre-defined on-demand processing chains, and virtual machines with powerful tools and access to the data. After an initial release in January 2016 a research platform was deployed gradually, allowing users to design, debug, and test applications on the platform. From the PROBA-V MEP, access to, e.g., Sentinel-2 and Sentinel-3 data will be addressed as well. Full article
Show Figures

Graphical abstract

Back to TopTop