Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = infectious lung injury model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11715 KB  
Article
Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review
by Elber Osorio-Rodríguez, José Correa-Guerrero, Dairo Rodelo-Barrios, María Bonilla-Llanos, Carlos Rebolledo-Maldonado, Jhonny Patiño-Patiño, Jesús Viera-Torres, Mariana Arias-Gómez, María Gracia-Ordoñez, Diego González-Betancur, Yassid Nuñez-Beyeh, Gustavo Solano-Sopó and Carmelo Dueñas-Castell
Int. J. Mol. Sci. 2025, 26(19), 9622; https://doi.org/10.3390/ijms26199622 - 2 Oct 2025
Viewed by 676
Abstract
Lung-protective ventilation and other experimental conditions raise arterial carbon dioxide tension (PaCO2) and alter pH. Short-term benefits are reported in non-infectious settings, whereas infection and/or prolonged exposure are typically harmful. This scoping review systematically maps immune-mediated effects of hypercapnia on innate [...] Read more.
Lung-protective ventilation and other experimental conditions raise arterial carbon dioxide tension (PaCO2) and alter pH. Short-term benefits are reported in non-infectious settings, whereas infection and/or prolonged exposure are typically harmful. This scoping review systematically maps immune-mediated effects of hypercapnia on innate immunity and alveolar epithelial repair. Scoping review per Levac et al. and PRISMA Extension for Scoping Reviews (Open Science Framework protocol: 10.17605/OSF.IO/WV85T; post hoc). We searched original preclinical studies (in vivo/in vitro) in PubMed, Web of Science, ScienceDirect, Cochrane Reviews, and SciELO (2008–2023). PaCO2 (mmHg) was prioritized; %Fraction of inspired Carbon Dioxide (%FiCO2) was recorded when PaCO2 was unavailable; pH was classified as buffered/unbuffered. Data were organized by context, PaCO2, and exposure duration; synthesis used heat maps (0–120 h) and a narrative description for >120 h. Mechanistic axes extracted the following: NF-κB (canonical/non-canonical), Bcl-2/Bcl-xL–Beclin-1/autophagy, AMPK/PKA/CaMKKβ/ERK1/2 and ENaC/Na,K-ATPase trafficking, Wnt/β-catenin in AT2 cells, and miR-183/IDH2/ATP. Thirty-five studies met the inclusion criteria. In non-infectious models, a “protective window” emerged, with moderate PaCO2 and brief exposure (65–95 mmHg; ≤4–6 h), featuring NF-κB attenuation and preserved epithelial ion transport. In infectious models and/or with prolonged exposure or higher PaCO2, harmful signals predominated: reduced phagocytosis/autophagy (Bcl-2/Bcl-xL–Beclin-1 axis), AMPK/PKA/ERK1/2-mediated internalization of ENaC/Na,K-ATPase, depressed β-catenin signaling in AT2 cells, impaired alveolar fluid clearance, and increased bacterial burden. Chronic exposures (>120 h) reinforced injury. Hypercapnia is a context-, dose-, time-, and pH-dependent double-edged modulator. The safe window is narrow; standardized, parallel reporting of PaCO2 and pH—with explicit comparisons of buffered vs. unbuffered hypercapnia—is essential to guide clinical translation. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Acute Lung Injury)
Show Figures

Figure 1

21 pages, 4729 KB  
Article
In Vivo Immune-Modulatory Activity of Lefamulin in an Influenza Virus A (H1N1) Infection Model in Mice
by Susanne Paukner, Sandra Kimber, Charlotte Cumper, Tina Rea-Davies, Lorena Sueiro Ballesteros, Christopher Kirkham, Adam Hargreaves, Steven P. Gelone, Claire Richards and Wolfgang W. Wicha
Int. J. Mol. Sci. 2024, 25(10), 5401; https://doi.org/10.3390/ijms25105401 - 15 May 2024
Cited by 1 | Viewed by 2006
Abstract
Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical [...] Read more.
Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant ‘low’ dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 26993 KB  
Article
Mesenchymal Stem Cell-Derived Exosomes Attenuate Murine Cytomegalovirus-Infected Pneumonia via NF-κB/NLRP3 Signaling Pathway
by Fei Chen, Zhida Chen, Hui-Ting Wu, Xin-Xiang Chen, Peiqi Zhan, Zheng-Yi Wei, Zizhang Ouyang, Xueyan Jiang, Ao Shen, Min-Hua Luo, Qifa Liu, Yue-Peng Zhou and Aiping Qin
Viruses 2024, 16(4), 619; https://doi.org/10.3390/v16040619 - 16 Apr 2024
Cited by 14 | Viewed by 4896
Abstract
Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia [...] Read more.
Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection. Full article
(This article belongs to the Special Issue 65-Year Anniversary of the Discovery of Cytomegalovirus)
Show Figures

Figure 1

11 pages, 978 KB  
Article
CNP-miR146a Decreases Inflammation in Murine Acute Infectious Lung Injury
by Alyssa E. Vaughn, Tanner Lehmann, Christina Sul, Alison M. Wallbank, Bailey D. Lyttle, James Bardill, Nana Burns, Anisha Apte, Eva S. Nozik, Bradford Smith, Christine U. Vohwinkel, Carlos Zgheib and Kenneth W. Liechty
Pharmaceutics 2023, 15(9), 2210; https://doi.org/10.3390/pharmaceutics15092210 - 26 Aug 2023
Cited by 6 | Viewed by 2004
Abstract
Acute respiratory distress syndrome (ARDS) has approximately 40% in-hospital mortality, and treatment is limited to supportive care. Pneumonia is the underlying etiology in many cases with unrestrained inflammation central to the pathophysiology. We have previously shown that CNP-miR146a, a radical scavenging cerium oxide [...] Read more.
Acute respiratory distress syndrome (ARDS) has approximately 40% in-hospital mortality, and treatment is limited to supportive care. Pneumonia is the underlying etiology in many cases with unrestrained inflammation central to the pathophysiology. We have previously shown that CNP-miR146a, a radical scavenging cerium oxide nanoparticle (CNP) conjugated to the anti-inflammatory microRNA(miR)-146a, reduces bleomycin- and endotoxin-induced acute lung injury (ALI) by decreasing inflammation. We therefore hypothesized that CNP-miR146a would decrease inflammation in murine infectious ALI. Mice were injured with intratracheal (IT) MRSA or saline followed by treatment with IT CNP-miR146a or saline control. Twenty-four hours post-infection, bronchoalveolar lavage fluid (BALF) and whole lungs were analyzed for various markers of inflammation. Compared to controls, MRSA infection significantly increased proinflammatory gene expression (IL-6, IL-8, TNFα, IL-1β; p < 0.05), BALF proinflammatory cytokines (IL-6, IL-8, TNFα, IL-1β; p < 0.01), and inflammatory cell infiltrate (p = 0.03). CNP-miR146a treatment significantly decreased proinflammatory gene expression (IL-6, IL-8, TNFα, IL-1β; p < 0.05), bronchoalveolar proinflammatory protein leak (IL-6, IL-8, TNFα; p < 0.05), and inflammatory infiltrate (p = 0.01). CNP-miR146a decreases inflammation and improves alveolar–capillary barrier integrity in the MRSA-infected lung and has significant promise as a potential therapeutic for ARDS. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

19 pages, 1444 KB  
Review
Human Lung Organoids—A Novel Experimental and Precision Medicine Approach
by Laura Kühl, Pauline Graichen, Nele von Daacke, Anne Mende, Malgorzata Wygrecka, Daniel P. Potaczek, Sarah Miethe and Holger Garn
Cells 2023, 12(16), 2067; https://doi.org/10.3390/cells12162067 - 15 Aug 2023
Cited by 37 | Viewed by 7256
Abstract
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent [...] Read more.
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent years, human lung organoids have been established as highly transferrable three-dimensional in vitro model systems for lung research. For acute infectious and chronic inflammatory diseases as well as lung cancer, human lung organoids have opened possibilities for precise in vitro research and a deeper understanding of mechanisms underlying lung injury and regeneration. Human lung organoids from induced pluripotent stem cells or from adult stem cells of patients’ samples introduce tools for understanding developmental processes and personalized medicine approaches. When further state-of-the-art technologies and protocols come into use, the full potential of human lung organoids can be harnessed. High-throughput assays in drug development, gene therapy, and organoid transplantation are current applications of organoids in translational research. In this review, we emphasize novel approaches in translational and personalized medicine in lung research focusing on the use of human lung organoids. Full article
Show Figures

Figure 1

11 pages, 1839 KB  
Communication
Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19?
by Roberto Molinaro, Anna Pasto, Francesca Taraballi, Federica Giordano, Jamil A. Azzi, Ennio Tasciotti and Claudia Corbo
Nanomaterials 2020, 10(11), 2301; https://doi.org/10.3390/nano10112301 - 20 Nov 2020
Cited by 36 | Viewed by 7628
Abstract
Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among [...] Read more.
Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19. Full article
(This article belongs to the Special Issue Nanomedicine and Biomimetic Drug Delivery Systems)
Show Figures

Graphical abstract

33 pages, 2669 KB  
Review
Could Ergothioneine Aid in the Treatment of Coronavirus Patients?
by Irwin K. Cheah and Barry Halliwell
Antioxidants 2020, 9(7), 595; https://doi.org/10.3390/antiox9070595 - 7 Jul 2020
Cited by 53 | Viewed by 13188
Abstract
Infection with SARS-CoV-2 causes the coronavirus infectious disease 2019 (COVID-19), a pandemic that has, at present, infected more than 11 million people globally. Some COVID-19 patients develop a severe and critical illness, spurred on by excessive inflammation that can lead to respiratory or [...] Read more.
Infection with SARS-CoV-2 causes the coronavirus infectious disease 2019 (COVID-19), a pandemic that has, at present, infected more than 11 million people globally. Some COVID-19 patients develop a severe and critical illness, spurred on by excessive inflammation that can lead to respiratory or multiorgan failure. Numerous studies have established the unique array of cytoprotective properties of the dietary amino acid ergothioneine. Based on studies in a range of in vitro and in vivo models, ergothioneine has exhibited the ability to modulate inflammation, scavenge free radicals, protect against acute respiratory distress syndrome, prevent endothelial dysfunction, protect against ischemia and reperfusion injury, protect against neuronal damage, counteract iron dysregulation, hinder lung and liver fibrosis, and mitigate damage to the lungs, kidneys, liver, gastrointestinal tract, and testis, amongst many others. When compiled, this evidence suggests that ergothioneine has a potential application in the treatment of the underlying pathology of COVID-19. We propose that ergothioneine could be used as a therapeutic to reduce the severity and mortality of COVID-19, especially in the elderly and those with underlying health conditions. This review presents evidence to support that proposal. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

18 pages, 4477 KB  
Article
A Transfer Learning Method for Pneumonia Classification and Visualization
by Juan Eduardo Luján-García, Cornelio Yáñez-Márquez, Yenny Villuendas-Rey and Oscar Camacho-Nieto
Appl. Sci. 2020, 10(8), 2908; https://doi.org/10.3390/app10082908 - 23 Apr 2020
Cited by 100 | Viewed by 8566
Abstract
Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have [...] Read more.
Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have been successfully used in order to provide computer-aided diagnosis by automatic classification of medical images. For its remarkable results, the Convolutional Neural Networks (models based on Deep Learning) that are widely used in Computer Vision tasks, such as classification of injuries and brain abnormalities, among others, stand out. In this paper, we present a transfer learning method that automatically classifies between 3883 chest X-ray images characterized as depicting pneumonia and 1349 labeled as normal. The proposed method uses the Xception Network pre-trained weights on ImageNet as an initialization. Our model is competitive with respect to state-of-the-art proposals. To make comparisons with other models, we have used four well-known performance measures, obtaining the following results: precision (0.84), recall (0.99), F1-score (0.91) and area under the ROC curve (0.97). These positive results allow us to consider our proposal as an alternative that can be useful in countries with a lack of equipment and specialized radiologists. Full article
(This article belongs to the Special Issue Artificial Intelligence for Medical Image Analysis)
Show Figures

Figure 1

Back to TopTop