Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = indol-3-yl-glyoxylamides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3145 KiB  
Article
Cheminformatics-Guided Exploration of Synthetic Marine Natural Product-Inspired Brominated Indole-3-Glyoxylamides and Their Potentials for Drug Discovery
by Darren C. Holland, Dale W. Prebble, Mark J. Calcott, Wayne A. Schroder, Francesca Ferretti, Aaron Lock, Vicky M. Avery, Milton J. Kiefel and Anthony R. Carroll
Molecules 2024, 29(15), 3648; https://doi.org/10.3390/molecules29153648 - 1 Aug 2024
Viewed by 2655
Abstract
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of [...] Read more.
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of cheminformatics aligned with published bioactivity data can provide insights to direct the choice of bioassays for the evaluation of new MNPs. Cheminformatics analysis of MNPs found in MarinLit (n = 39,730) up to the end of 2023 highlighted indol-3-yl-glyoxylamides (IGAs, n = 24) as a group of MNPs with no reported bioactivities. However, a recent review of synthetic IGAs highlighted these scaffolds as privileged structures with several compounds under clinical evaluation. Herein, we report the synthesis of a library of 32 MNP-inspired brominated IGAs (2556) using a simple one-pot, multistep method affording access to these diverse chemical scaffolds. Directed by a meta-analysis of the biological activities reported for marine indole alkaloids (MIAs) and synthetic IGAs, the brominated IGAs 2556 were examined for their potential bioactivities against the Parkinson’s Disease amyloid protein alpha synuclein (α-syn), antiplasmodial activities against chloroquine-resistant (3D7) and sensitive (Dd2) parasite strains of Plasmodium falciparum, and inhibition of mammalian (chymotrypsin and elastase) and viral (SARS-CoV-2 3CLpro) proteases. All of the synthetic IGAs tested exhibited binding affinity to the amyloid protein α-syn, while some showed inhibitory activities against P. falciparum, and the proteases, SARS-CoV-2 3CLpro, and chymotrypsin. The cellular safety of the IGAs was examined against cancerous and non-cancerous human cell lines, with all of the compounds tested inactive, thereby validating cheminformatics and meta-analyses results. The findings presented herein expand our knowledge of marine IGA bioactive chemical space and advocate expanding the scope of biological assays routinely used to investigate NP bioactivities, specifically those more suitable for non-toxic compounds. By integrating cheminformatics tools and functional assays into NP biological testing workflows, we can aim to enhance the potential of NPs and their scaffolds for future drug discovery and development. Full article
(This article belongs to the Special Issue Recent Advances in the Organic Synthesis of Bioactive Compounds)
Show Figures

Graphical abstract

43 pages, 6339 KiB  
Review
Indol-3-ylglyoxylamide as Privileged Scaffold in Medicinal Chemistry
by Elisabetta Barresi, Marco Robello, Emma Baglini, Valeria Poggetti, Monica Viviano, Silvia Salerno, Federico Da Settimo and Sabrina Taliani
Pharmaceuticals 2023, 16(7), 997; https://doi.org/10.3390/ph16070997 - 12 Jul 2023
Cited by 4 | Viewed by 3154
Abstract
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as [...] Read more.
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a “privileged structure,” with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years. Full article
(This article belongs to the Special Issue Privileged Structures as Leads in Medicinal Chemistry 2023)
Show Figures

Graphical abstract

Back to TopTop