Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = in-gas-jet laser resonance ionization spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4378 KB  
Article
The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum
by Victor Varentsov
Atoms 2023, 11(10), 123; https://doi.org/10.3390/atoms11100123 - 22 Sep 2023
Cited by 1 | Viewed by 2008
Abstract
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed [...] Read more.
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

22 pages, 11184 KB  
Article
Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy
by Victor Varentsov
Atoms 2023, 11(6), 88; https://doi.org/10.3390/atoms11060088 - 28 May 2023
Cited by 1 | Viewed by 2122
Abstract
This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations [...] Read more.
This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations for JetRIS setup (as a typical representative of the conventional in-gas-jet technique nowadays) are also presented and discussed. The direct comparison of calculation results for the proposed new technique with the conventional one shows that the double-nozzle technique has many advantages compared with the one used in the JetRIS setup at GSI for future high-resolution laser spectroscopic study of heaviest elements. To fully implement the proposed new technique in all existing (or under construction) setups for in-gas-jet laser resonance ionization spectroscopy, it will be enough to replace the used supersonic nozzle with the miniature double-nozzle device described in the paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

Back to TopTop