Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = in-core chemistry of a supercritical water-cooled small modular reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1277 KiB  
Article
Fast-Neutron Radiolysis of Sub- and Supercritical Water at 300–600 °C and 25 MPa: A Monte Carlo Track Chemistry Simulation Study
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen, Abida Sultana and Jean-Paul Jay-Gerin
Appl. Sci. 2024, 14(16), 7024; https://doi.org/10.3390/app14167024 - 10 Aug 2024
Cited by 1 | Viewed by 1351
Abstract
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and P [...] Read more.
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and Pc = 22.06 MPa), which introduces specific technical challenges that need to be addressed. The primary concerns involve the effects of intense radiation fields—including fast neutrons, recoil protons/oxygen ions, and γ rays—on the chemistry of the coolant fluid and the integrity of construction materials. (2) Methods: This study employs Monte Carlo simulations of radiation track chemistry to investigate the yields of radiolytic species in SCWRs/SMRs exposed to 2 MeV neutrons. In our calculations, only the contributions from the first three recoil protons with initial energies of 1.264, 0.465, and 0.171 MeV were considered. Our analysis was conducted at both subcritical (300 and 350 °C) and supercritical temperatures (400–600 °C), maintaining a constant pressure of 25 MPa. (3) Results: Our simulations provide insights into the radiolytic formation of chemical species such as eaq, H, H2, OH, and H2O2 from ~1 ps to 1 ms. Compared to data from radiation with low linear energy transfer (LET), the G(eaq) and G(OH) values obtained for fast neutrons show a similar temporal dependence but with smaller amplitude—a result demonstrating the high LET nature of fast neutrons. A notable outcome of our simulations is the marked increase in G(OH) and G(H2), coupled with a corresponding reduction in G(H), observed during the homogeneous chemical stage of radiolysis. This evolution is attributed to the oxidation of water by the H atom according to the reaction H + H2O → OH + H2. This reaction acts as a significant source of H2, potentially reducing the need to add extra hydrogen to the reactor’s coolant water to suppress the net radiolytic production of oxidizing species. Unlike in subcritical water, our simulations also indicate that G(H2O2) remains very low in low-density SCW throughout the interval from ~1 ps to 1 ms, suggesting that H2O2 is less likely to contribute to oxidative stress under these conditions. (4) Conclusions: The results of this study could significantly impact water-chemistry management in the proposed SCWRs and SCW-SMRs, which is crucial for assessing and mitigating the corrosion risks to reactor materials, especially for long-term operation. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

11 pages, 637 KiB  
Communication
Characterizing the Early Acidic Response in Advanced Small Modular Reactors Cooled with High-Temperature, High-Pressure Water
by Abida Sultana, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Radiation 2024, 4(1), 26-36; https://doi.org/10.3390/radiation4010003 - 9 Feb 2024
Cited by 2 | Viewed by 1596
Abstract
Utilizing Monte Carlo multi-track chemistry simulations along with a cylindrical instantaneous pulse (Dirac) irradiation model, we assessed the initial acidic response in both subcritical and supercritical water under high radiation dose rates. This investigation spans a temperature range of 300 to 500 °C [...] Read more.
Utilizing Monte Carlo multi-track chemistry simulations along with a cylindrical instantaneous pulse (Dirac) irradiation model, we assessed the initial acidic response in both subcritical and supercritical water under high radiation dose rates. This investigation spans a temperature range of 300 to 500 °C at a nominal pressure of 25 MPa, aligning with the operational conditions anticipated in proposed supercritical water (SCW)-cooled small modular reactors (SCW-SMRs). A pivotal finding from our study is the observation of a significant ‘acid spike’ effect, which shows a notable intensification in response to increasing radiation dose rates. Our results bring to light the potential risks posed by this acidity, which could potentially foster a corrosive environment and thereby increase the risk of accelerated material degradation in reactor components. Full article
Show Figures

Figure 1

Back to TopTop