Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = in silico clinical trials (ISCT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1140 KiB  
Review
Future Designs of Clinical Trials in Nephrology: Integrating Methodological Innovation and Computational Power
by Camillo Tancredi Strizzi and Francesco Pesce
Sensors 2025, 25(16), 4909; https://doi.org/10.3390/s25164909 - 8 Aug 2025
Viewed by 348
Abstract
Clinical trials in nephrology have historically been hindered by significant challenges, including slow disease progression, patient heterogeneity, and recruitment difficulties. While recent therapeutic breakthroughs have transformed care, they have also created a ‘paradox of success’ by lowering baseline event rates, further complicating traditional [...] Read more.
Clinical trials in nephrology have historically been hindered by significant challenges, including slow disease progression, patient heterogeneity, and recruitment difficulties. While recent therapeutic breakthroughs have transformed care, they have also created a ‘paradox of success’ by lowering baseline event rates, further complicating traditional trial designs. We hypothesize that integrating innovative trial methodologies with advanced computational tools is essential for overcoming these hurdles and accelerating therapeutic development in kidney disease. This narrative review synthesizes the literature on persistent challenges in nephrology trials and explores methodological innovations. It investigates the transformative impact of computational tools, specifically Artificial Intelligence (AI), techniques like Augmented Reality (AR) and Conditional Tabular Generative Adversarial Networks (CTGANs), in silico clinical trials (ISCTs) and Digital Health Technologies across the research lifecycle. Key methodological innovations include adaptive designs, pragmatic trials, real-world evidence, and validated surrogate endpoints. AI offers transformative potential in optimizing trial design, accelerating patient stratification, and enabling complex data analysis, while AR can improve procedural accuracy, and CTGANs can augment scarce datasets. ISCTs provide complementary capabilities for simulating drug effects and optimizing designs using virtual patient cohorts. The future of clinical research in nephrology lies in the synergistic convergence of methodological and computational innovation. This integrated approach offers a pathway for conducting more efficient, precise, and patient-centric trials, provided that critical barriers related to data quality, model validation, regulatory acceptance, and ethical implementation are addressed. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop