Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = impervious surface cover (ISC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10327 KiB  
Article
Evaluating the Spectral Indices Efficiency to Quantify Daytime Surface Anthropogenic Heat Island Intensity: An Intercontinental Methodology
by Mohammad Karimi Firozjaei, Solmaz Fathololoumi, Naeim Mijani, Majid Kiavarz, Salman Qureshi, Mehdi Homaee and Seyed Kazem Alavipanah
Remote Sens. 2020, 12(17), 2854; https://doi.org/10.3390/rs12172854 - 2 Sep 2020
Cited by 23 | Viewed by 3882
Abstract
The surface anthropogenic heat island (SAHI) phenomenon is one of the most important environmental concerns in urban areas. SAHIs play a significant role in quality of urban life. Hence, the quantification of SAHI intensity (SAHII) is of great importance. The impervious surface cover [...] Read more.
The surface anthropogenic heat island (SAHI) phenomenon is one of the most important environmental concerns in urban areas. SAHIs play a significant role in quality of urban life. Hence, the quantification of SAHI intensity (SAHII) is of great importance. The impervious surface cover (ISC) can well reflect the degree and extent of anthropogenic activities in an area. Various actual ISC (AISC) datasets are available for different regions of the world. However, the temporal and spatial coverage of available and accessible AISC datasets is limited. This study was aimed to evaluate the spectral indices efficiency to daytime SAHII (DSAHII) quantification. Consequently, 14 cities including Budapest, Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome in Europe and Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix in the USA, were selected. A set of 91 Landsat 8 images, the Landsat provisional surface temperature product, the High Resolution Imperviousness Layer (HRIL), and the National Land Cover Database (NLCD) imperviousness data were used as the AISC datasets for the selected cities. The spectral index-based ISC (SIISC) and land surface temperature (LST) were modelled from the Landsat 8 images. Then, a linear least square model (LLSM) obtained from the LST-AISC feature space was applied to quantify the actual SAHII of the selected cities. Finally, the SAHII of the selected cities was modelled based on the LST-SIISC feature space-derived LLSM. Finally, the values of the coefficient of determination (R2) and the root mean square error (RMSE) between the actual and modelled SAHII were calculated to evaluate and compare the performance of different spectral indices in SAHII quantification. The performance of the spectral indices used in the built LST-SIISC feature space for SAHII quantification differed. The index-based built-up index (IBI) (R2 = 0.98, RMSE = 0.34 °C) and albedo (0.76, 1.39 °C) performed the best and worst performance in SAHII quantification, respectively. Our results indicate that the LST-SIISC feature space is very useful and effective for SAHII quantification. The advantages of the spectral indices used in SAHII quantification include (1) synchronization with the recording of thermal data, (2) simplicity, (3) low cost, (4) accessibility under different spatial and temporal conditions, and (5) scalability. Full article
Show Figures

Graphical abstract

15 pages, 5671 KiB  
Article
Remotely Sensed Urban Surface Ecological Index (RSUSEI): An Analytical Framework for Assessing the Surface Ecological Status in Urban Environments
by Mohammad Karimi Firozjaei, Solmaz Fathololoumi, Qihao Weng, Majid Kiavarz and Seyed Kazem Alavipanah
Remote Sens. 2020, 12(12), 2029; https://doi.org/10.3390/rs12122029 - 24 Jun 2020
Cited by 63 | Viewed by 4889
Abstract
Urban Surface Ecological Status (USES) reflects the structure and function of an urban ecosystem. USES is influenced by the surface biophysical, biochemical, and biological properties. The assessment and modeling of USES is crucial for sustainability assessment in support of achieving sustainable development goals [...] Read more.
Urban Surface Ecological Status (USES) reflects the structure and function of an urban ecosystem. USES is influenced by the surface biophysical, biochemical, and biological properties. The assessment and modeling of USES is crucial for sustainability assessment in support of achieving sustainable development goals such as sustainable cities and communities. The objective of this study is to present a new analytical framework for assessing the USES. This analytical framework is centered on a new index, Remotely Sensed Urban Surface Ecological index (RSUSEI). In this study, RSUSEI is used to assess the USES of six selected cities in the U.S.A. To this end, Landsat 8 images, water vapor products, and the National Land Cover Database (NLCD) land cover and imperviousness datasets are downloaded for use. Firstly, Land Surface Temperature (LST), Wetness, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Soil Index (NDSI) are derived by remote sensing methods. Then, RSUSEI is developed by the combination of NDVI, NDSI, Wetness, LST, and Impervious Surface Cover (ISC) with Principal Components Analysis (PCA). Next, the spatial variations of USES across the cities are evaluated and compared. Finally, the association degree of each parameter in the USES modeling is investigated. Results show that the spatial variability of LST, ISC, NDVI, NDSI, and Wetness is heterogeneous within and between cities. The mean (standard deviation) value of RSUSEI for Minneapolis, Dallas, Phoenix, Los Angeles, Chicago and Seattle yielded 0.58 (0.16), 0.54 (0.17), 0.47 (0.19), 0.63 (0.21), 0.50 (0.17), and 0.44 (0.19), respectively. For all the cities, PC1 included more than 93% of the surface information, which is contributed by greenness, moisture, dryness, heat, and imperviousness. The highest and lowest mean values of RSUSEI are found in “Developed, High intensity” (0.76) and “Developed, Open Space” (0.35) lands, respectively. The mean correlation coefficient between RSUSEI and LST, ISC, NDVI, NDSI, and Wetness, is 0.47, 0.97, −0.31, 0.17, and −0.27, respectively. The statistical significance of these correlations is confirmed at 95% confidence level. These results suggest that the association degree of ISC in USES modeling is the highest, despite the differences in land cover and biophysical characteristics in the cities. RSUSEI could be very useful in modeling and comparing USES across cities with different geographical, climatic, environmental, and biophysical conditions and can also be used for assessing urban sustainability over space and time. Full article
Show Figures

Graphical abstract

Back to TopTop