Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = immunology of yellow fever virus infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6957 KiB  
Article
Mechanisms of Flavivirus Cross-Protection against Yellow Fever in a Mouse Model
by Divya P. Shinde, Jordyn Walker, Rachel A. Reyna, Dionna Scharton, Brooke Mitchell, Ennid Dulaney, Srinivisa Reddy Bonam, Haitao Hu, Jessica A. Plante, Kenneth S. Plante and Scott C. Weaver
Viruses 2024, 16(6), 836; https://doi.org/10.3390/v16060836 - 24 May 2024
Cited by 4 | Viewed by 1785
Abstract
The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 [...] Read more.
The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/β receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 1769 KiB  
Review
Serological Cross-Reactivity in Zoonotic Flaviviral Infections of Medical Importance
by Priscilla Gomes da Silva, José Augusto Seixas dos Reis, Marcio Nogueira Rodrigues, Quézia da Silva Ardaya and João Rodrigo Mesquita
Antibodies 2023, 12(1), 18; https://doi.org/10.3390/antib12010018 - 24 Feb 2023
Cited by 14 | Viewed by 5130
Abstract
Flaviviruses are enveloped RNA viruses from the family Flaviviridae that comprise many important human pathogenic arboviruses such as Yellow Fever, Dengue, and Zika viruses. Because they belong to the same genus, these viruses show sequence and structural homology among them, which results in [...] Read more.
Flaviviruses are enveloped RNA viruses from the family Flaviviridae that comprise many important human pathogenic arboviruses such as Yellow Fever, Dengue, and Zika viruses. Because they belong to the same genus, these viruses show sequence and structural homology among them, which results in serological cross-reactivity. Upon infection, the immune system produces both species-specific and cross-reactive antibodies, and depending on the virus, in a successive flavivirus infection, cross-reactive antibodies either enhance protection or exacerbate the disease—the latter usually due to antibody-dependent enhancement. These antigenic relationships between different flaviviruses that lead to serological cross-reactivity make them difficult to be identified through serological methods, especially when it comes to successive flavivirus infections. We present here an overview of the main structural, epidemiological, and immunological aspects of flaviviruses, highlighting the role of neutralizing antibodies in fighting viral infections and in the “original antigenic sin” problem. Finally, we draw attention to the importance of developing a rapid serological diagnostic test for flaviviruses with high sensitivity and specificity, especially when considering that cross-reactive immunity can influence the outcome of these infections. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

16 pages, 5259 KiB  
Article
Experimental Yellow Fever in Squirrel Monkey: Characterization of Liver In Situ Immune Response
by Milene S. Ferreira, Jorge R. Sousa, Pedro S. Bezerra Júnior, Valíria D. Cerqueira, Carlos A. Oliveira Júnior, Gabriela R. C. Rivero, Paulo H. G. Castro, Gilmara A. Silva, José Augusto P. C. Muniz, Eliana V. P. da Silva, Samir M. M. Casseb, Carla Pagliari, Lívia C. Martins, Robert B. Tesh, Juarez A. S. Quaresma and Pedro F. C. Vasconcelos
Viruses 2023, 15(2), 551; https://doi.org/10.3390/v15020551 - 16 Feb 2023
Cited by 3 | Viewed by 2581
Abstract
Non-human primates contribute to the spread of yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas, such as Brazil. This study aims to investigate virological, histopathological and immunohistochemical findings in livers of squirrel monkeys (Saimiri spp.) infected with [...] Read more.
Non-human primates contribute to the spread of yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas, such as Brazil. This study aims to investigate virological, histopathological and immunohistochemical findings in livers of squirrel monkeys (Saimiri spp.) infected with the YFV. Viremia occurred 1–30 days post infection (dpi) and the virus showed a predilection for the middle zone (Z2). The livers were jaundiced with subcapsular and hemorrhagic multifocal petechiae. Apoptosis, lytic and coagulative necrosis, steatosis and cellular edema were also observed. The immune response was characterized by the expression of S100, CD11b, CD57, CD4 and CD20; endothelial markers; stress and cell death; pro and anti-inflammatory cytokines, as well as Treg (IL-35) and IL-17 throughout the experimental period. Lesions during the severe phase of the disease were associated with excessive production of apoptotic pro-inflammatory cytokines, such as IFN-γ and TNF-α, released by inflammatory response cells (CD4+ and CD8+ T lymphocytes) and associated with high expression of molecules of adhesion in the inflammatory foci observed in Z2. Immunostaining of the local endothelium in vascular cells and the bile duct was intense, suggesting a fundamental role in liver damage and in the pathogenesis of the disease. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

28 pages, 38776 KiB  
Review
Molecular Insights into the Flavivirus Replication Complex
by Kaïn van den Elsen, Jun Ping Quek and Dahai Luo
Viruses 2021, 13(6), 956; https://doi.org/10.3390/v13060956 - 21 May 2021
Cited by 62 | Viewed by 10893
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available [...] Read more.
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies. Full article
(This article belongs to the Special Issue Viral Replication Complexes)
Show Figures

Graphical abstract

Back to TopTop