Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = immersion-mode heterogeneous nucleation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 692 KiB  
Article
Immersion Freezing Ability of Freshly Emitted Soot with Various Physico-Chemical Characteristics
by John Falk, Kimmo Korhonen, Vilhelm B. Malmborg, Louise Gren, Axel C. Eriksson, Panu Karjalainen, Lassi Markkula, Per-Erik Bengtsson, Annele Virtanen, Birgitta Svenningsson, Joakim Pagels and Thomas B. Kristensen
Atmosphere 2021, 12(9), 1173; https://doi.org/10.3390/atmos12091173 - 12 Sep 2021
Cited by 10 | Viewed by 2697
Abstract
The immersion freezing ability of soot particles has in previous studies been reported in the range of low/insignificant to very high. The aims of this study were to: (i) perform detailed physico-chemical characterisation of freshly produced soot particles with very different properties, (ii) [...] Read more.
The immersion freezing ability of soot particles has in previous studies been reported in the range of low/insignificant to very high. The aims of this study were to: (i) perform detailed physico-chemical characterisation of freshly produced soot particles with very different properties, (ii) investigate the immersion freezing ability of the same particles, and (iii) investigate the potential links between physico-chemical particle properties and ice-activity. A miniCAST soot generator was used to produce eight different soot samples representing a wide range of physico-chemical properties. A continuous flow diffusion chamber was used to study each sample online in immersion mode over the temperature (T) range from −41 to −32 °C, at a supersaturation of about 10% with respect to liquid water. All samples exhibited low to no heterogeneous immersion freezing. The most active sample reached ice-activated fractions (AF) of 10−3 and 10−4 at temperatures of 1.7 and 1.9 K , respectively, above the homogeneous freezing temperature. The samples were characterized online with respect to a wide range of physico-chemical properties including effective particle density, optical properties, particle surface oxidation and soot maturity. We did observe indications of increasing immersion freezing ice-activity with increasing effective particle density and increasing particulate PAH fraction. Hence, those properties, or other properties co-varying with those, could potentially enhance the immersion freezing ice-activity of the studied soot particle types. However, we found no significant correlation between the physico-chemical properties and the observed ice-nucleating ability when the particle ensemble was extended to include previously published results including more ice-active biomass combustion soot particles. We conclude that it does not appear possible in general and in any straightforward way to link observed soot particle physico-chemical properties to the ice-nucleating ability using the online instrumentation included in this study. Furthermore, our observations support that freshly produced soot particles with a wide range of physico-chemical properties have low to insignificant immersion freezing ice-nucleating ability. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

1 pages, 130 KiB  
Proceeding Paper
Online Ice-Nucleating Particle Measurements in the Southern Great Plains (SGP) Using the Portable Ice Nucleation Experiment (PINE) Chamber
by Hemanth S. K. Vepuri, Larissa Lacher, Jens Nadolny, Ottmar Möhler and Naruki Hiranuma
Environ. Sci. Proc. 2021, 4(1), 25; https://doi.org/10.3390/ecas2020-08469 - 17 Nov 2020
Viewed by 1276
Abstract
We present our field results of ice-nucleating particle (INP) measurements from the commercialized version of the Portable Ice Nucleation Experiment (PINE) chamber from two different campaigns. Our first field campaign, TxTEST, was conducted at West Texas A&M University (July–August 2019), and the other [...] Read more.
We present our field results of ice-nucleating particle (INP) measurements from the commercialized version of the Portable Ice Nucleation Experiment (PINE) chamber from two different campaigns. Our first field campaign, TxTEST, was conducted at West Texas A&M University (July–August 2019), and the other campaign, ExINP-SGP, was held at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (October–November 2019). In both campaigns, the PINE made semi-autonomous INP measurements at a high-time-resolution of 8 min for individual expansions with continuous temperature scans from −5 to −35 °C in 90 min. The PINE instrument was set to have a minimum detection capability of ~0.3 INPs per liter of air. To complement our online PINE measurements, polycarbonate filter impactor and liquid impinger samples were also collected next to the PINE. Offline droplet-freezing assays were later conducted from the filter and impinger samples for the immersion freezing mode. Our preliminary results suggested that the immersion freezing mode was the dominant ice-nucleation mechanism at the SGP site compared to the deposition mode. We did not find any statistical correlation between cloud condensation nuclei (CCN) and INP concentration during our ExINP-SGP period, suggesting that CCN activation is not a significant prerequisite for ice nucleation at the SGP site. In addition, we analyzed the relationship between various aerosol particle size ranges and INP abundance. At SGP, we found an increase in INPs with the super-micron particles, especially for diameters >2 μm across the entire heterogeneous freezing temperature range examined by PINE. Lastly, we computed a variety of INP parameters, such as, ice nucleation active surface site density, water activity-based freezing, and cumulative INP per liter of air, representing the ambient INPs in the SGP. Our field campaign results demonstrated the PINE’s ability to make remote INP measurements, promising future long-term operations including at isolated locations. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Atmospheric Sciences)
13 pages, 2674 KiB  
Article
Development, Characterization, and Validation of a Cold Stage-Based Ice Nucleation Array (PKU-INA)
by Jie Chen, Xiangyu Pei, Hong Wang, Jingchuan Chen, Yishu Zhu, Mingjin Tang and Zhijun Wu
Atmosphere 2018, 9(9), 357; https://doi.org/10.3390/atmos9090357 - 17 Sep 2018
Cited by 19 | Viewed by 4993
Abstract
A drop-freeze array (PeKing University Ice Nucleation Array, PKU-INA) was developed based on the cold-stage method to investigate heterogeneous ice nucleation properties of atmospheric particles in the immersion freezing mode from −30 to 0 °C. The instrumental details as well as characterization and [...] Read more.
A drop-freeze array (PeKing University Ice Nucleation Array, PKU-INA) was developed based on the cold-stage method to investigate heterogeneous ice nucleation properties of atmospheric particles in the immersion freezing mode from −30 to 0 °C. The instrumental details as well as characterization and performance evaluation are described in this paper. A careful temperature calibration protocol was developed in our work. The uncertainties in the reported temperatures were found to be less than 0.4 °C at various cooling rates after calibration. We also measured the ice nucleation activities of droplets containing different mass concentrations of illite NX, and the results obtained in our work show good agreement with those reported previously using other instruments with similar principles. Overall, we show that our newly developed PKU-INA is a robust and reliable instrument for investigation of heterogeneous ice nucleation in the immersion freezing mode. Full article
(This article belongs to the Special Issue Aerosol-Cloud Interactions)
Show Figures

Figure 1

15 pages, 1843 KiB  
Article
Compositional and Mineralogical Effects on Ice Nucleation Activity of Volcanic Ash
by Kimberly Genareau, Shelby M. Cloer, Katherine Primm, Margaret A. Tolbert and Taylor W. Woods
Atmosphere 2018, 9(7), 238; https://doi.org/10.3390/atmos9070238 - 22 Jun 2018
Cited by 11 | Viewed by 6001
Abstract
Volcanic ash produced during explosive eruptions may serve as ice nuclei in the atmosphere, contributing to the occurrence of volcanic lightning due to tribocharging from ice–ice or ice–ash collisions. Here, different ash samples were tested using deposition-mode and immersion-mode ice nucleation experiments. Results [...] Read more.
Volcanic ash produced during explosive eruptions may serve as ice nuclei in the atmosphere, contributing to the occurrence of volcanic lightning due to tribocharging from ice–ice or ice–ash collisions. Here, different ash samples were tested using deposition-mode and immersion-mode ice nucleation experiments. Results show that bulk composition and mineral abundance have no measurable effect on depositional freezing at the temperatures tested, as all samples have similar ice saturation ratios. In the immersion mode, there is a strong positive correlation between K2O content and ice nucleation site density at −25 °C and a strong negative correlation between MnO and TiO2 content at temperatures from −35 to −30 °C. The most efficient sample in the immersion mode has the highest surface area, smallest average grain size, highest K2O content, and lowest MnO content. These results indicate that although ash abundance—which creates more available surface area for nucleation—has a significant effect on immersion-mode freezing, composition may also contribute. Consequently, highly explosive eruptions of compositionally evolved magmas create the necessary parameters to promote ice nucleation on grain surfaces, which permits tribocharging due to ice–ice or ice–ash collisions, and contribute to the frequent occurrence of volcanic lightning within the eruptive column and plume during these events. Full article
(This article belongs to the Special Issue Ice Nucleation in the Atmosphere)
Show Figures

Figure 1

Back to TopTop