Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = illumine MiSeq sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2267 KB  
Article
Alterations in the Platelet Transcriptome Mediate Prenatal Thirdhand Smoke Exposure Associated Thrombogenicity via Integrated miRNA-mRNA Regulatory Networks
by Hamdy E. A. Ali, Ahmed B. Alarabi, Fatima Z. Alshbool and Fadi T. Khasawneh
Int. J. Mol. Sci. 2025, 26(15), 7633; https://doi.org/10.3390/ijms26157633 - 7 Aug 2025
Viewed by 841
Abstract
Cigarette smoking is acknowledged as the most preventable risk factor for thrombogenesis-associated cardiovascular disease. Mice prenatally exposed to the thirdhand smoke (THS) form of tobacco exhibited a higher tendency to develop occlusive thrombosis, along with enhancement of several platelet functional responses. Our objective [...] Read more.
Cigarette smoking is acknowledged as the most preventable risk factor for thrombogenesis-associated cardiovascular disease. Mice prenatally exposed to the thirdhand smoke (THS) form of tobacco exhibited a higher tendency to develop occlusive thrombosis, along with enhancement of several platelet functional responses. Our objective was to investigate whether prenatal (in utero) THS exposure impacts the platelet transcriptome, resulting in enhanced platelet functional responses, thereby underlying THS-associated thrombogenicity. Blood samples obtained from twenty male mice prenatally exposed to THS, along with an equal number of age-matched male mice exposed to clean air (CA) as a control, were divided into pools of five animals and used to prepare leukocyte and red blood cell-depleted platelets. RNA sequencing for mRNA and microRNA (miRNA) was utilized to analyze and compare the platelet expression profiles of the two exposure groups. RNA seq analyses revealed distinct changes in both gene expression and miRNA profiles, with 448 coding genes and 18 miRNAs significantly altered between the two groups. miRNA–mRNA interaction analysis highlighted 14 differentially expressed miRNAs that potentially target 120 of the differentially expressed genes in our data set. Interestingly, altered genes in miRNA–mRNA pairs were functionally enriched into pathways associated with platelet physiology, including platelet activation, signaling and aggregation, and cellular response to chemical stimuli. Our findings establish—for the first time—that prenatal exposure to THS modifies the platelet transcriptome, thereby rendering platelets hypersensitive to stimuli and more prone to thrombogenicity. Additionally, we illuminate the coordinated function of platelet miRNA and mRNA targets in mediating this response. Full article
(This article belongs to the Special Issue MicroRNAs and mRNA in Human Health and Disease)
Show Figures

Figure 1

22 pages, 6721 KB  
Article
The Influence of Diet and Sex on the Gut Microbiota of Lean and Obese JCR:LA-cp Rats
by Craig Resch, Mihir Parikh, J. Alejandro Austria, Spencer D. Proctor, Thomas Netticadan, Heather Blewett and Grant N. Pierce
Microorganisms 2021, 9(5), 1037; https://doi.org/10.3390/microorganisms9051037 - 12 May 2021
Cited by 9 | Viewed by 3353
Abstract
There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed [...] Read more.
There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions. Full article
(This article belongs to the Special Issue Current Understanding of the Human Microbiome in Health and Disease)
Show Figures

Figure 1

19 pages, 4382 KB  
Article
Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily
by Songping Luo, Binghui He, Dandan Song, Tianyang Li, Yaopeng Wu and Lei Yang
Sustainability 2020, 12(5), 2124; https://doi.org/10.3390/su12052124 - 9 Mar 2020
Cited by 13 | Viewed by 3878
Abstract
Biochar has been widely used to ameliorate soil quality and increase crop productivity through enhancement of nutrient availability and microbial community. The Karst yellow soil in China is characterized by severe soil degradation owing to intensive nutrient leaching. However, the biochar addition effects [...] Read more.
Biochar has been widely used to ameliorate soil quality and increase crop productivity through enhancement of nutrient availability and microbial community. The Karst yellow soil in China is characterized by severe soil degradation owing to intensive nutrient leaching. However, the biochar addition effects on the changes of Karst yellow soil are unclear, and the adequate number of biochar dosages to explain optimum of plant growth in this soil area remains poorly understood. In this study, pot experiments were conducted to examine the effects of biochar addition (1%, 3%, 5%, 7%, and 9% by weight; 0% as a control) on bacterial abundance and community structure via high-throughput sequencing coupled with bioinformatics methods applied to Karst yellow soil with planting ryegrass (Lolium perenne L.) and daylily (Hemerocallis fulva). After adding biochar for 188 days, significantly increased pH, soil organic matter, total nutrient contents, and bacterial abundance, but decreased available nitrogen, were observed. Changed bacterial community structures were found in biochar treatments compared with those without biochar. In both soils of planted ryegrass and daylily, the optimum soil bacterial abundance was found in 7% biochar dosage, but the lowest values were in the controls (0%). Taxonomic analysis identified that Micrococcaceae (24.53%), Oxalobacteraceae (11.87%), and Nocardioidaceae (7.89%) were the dominant family in the soil of ryegrass growth, and Micrococcaceae (16.20%), Xanthomonadaceae (6.94%), and Nocardioidaceae (6.41%) were the dominant family in soil of daylily growth. Canonical correspondence analysis showed that the alterations of soil bacterial abundance and community were highly interrelated with soil chemical properties. The results provided a better understanding of the mechanisms underlying the plant-soil microbe interactions and their responses to biochar dosages in low fertility soil regions. Full article
Show Figures

Figure 1

Back to TopTop