Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = hydrous manganese dioxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2755 KiB  
Article
Xylem-Inspired Hydrous Manganese Dioxide/Aluminum Oxide/Polyethersulfone Mixed Matrix Membrane for Oily Wastewater Treatment
by Teng Sam Yun, Pei Ching Oh, Moau Jian Toh, Yun Kee Yap and Qin Yi Te
Membranes 2022, 12(9), 860; https://doi.org/10.3390/membranes12090860 - 5 Sep 2022
Cited by 1 | Viewed by 2221
Abstract
Ultrafiltration membrane has been widely used for oily wastewater treatment application attributed to its cost-efficiency, ease of operation, and high separation performance. To achieve high membrane flux, the pores of the membrane need to be wetted, which can be attained by using hydrophilic [...] Read more.
Ultrafiltration membrane has been widely used for oily wastewater treatment application attributed to its cost-efficiency, ease of operation, and high separation performance. To achieve high membrane flux, the pores of the membrane need to be wetted, which can be attained by using hydrophilic membrane. Nevertheless, conventional hydrophilic membrane suffered from inhomogeneous dispersion of nanofillers, causing a bottleneck in the membrane flux performance. This called for the need to enhance the dispersion of nanofillers within the polymeric matrix. In this work, in-house-fabricated hydrous manganese dioxide–aluminum oxide (HMO-Al2O3) was added into polyethersulfone (PES) dope solution to enhance the membrane flux through a xylem-inspired water transport mechanism on capillary action aided by cohesion force. Binary fillers HMO-Al2O3 loading was optimized at 0.5:0.5 in achieving 169 nm membrane mean pore size. Membrane morphology confirmed the formation of macro-void in membrane structure, and this was probably caused by the hydrophilic nanofiller interfacial stress released in PES matrix during the phase inversion process. The superhydrophilic properties of PES 3 in achieving 0° water contact angle was supported by the energy-dispersive X-ray analysis, where it achieved high O element, Mn element, and Al elements of 39.68%, 0.94%, and 5.35%, respectively, indicating that the nanofillers were more homogeneously dispersed in PES matrix. The superhydrophilic property of PES 3 was further supported by high pure water flux at 245.95 L/m2.h.bar, which was 3428.70% higher than the pristine PES membrane, 197.1% higher than PES 1 incorporated with HMO nanofiller, and 854.00% higher than PES 5 incorporated with Al2O3 nanofillers. Moreover, the excellent membrane separation performance of PES 3 was achieved without compromising the oil rejection capability (98.27% rejection) with 12 g/L (12,000 ppm) oily wastewater. Full article
(This article belongs to the Special Issue Membrane Science towards Sustainable Development Goals (SDGs))
Show Figures

Graphical abstract

Back to TopTop