Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hydroseric succession

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3146 KiB  
Article
Restoring Lakeshore Vegetation in the Face of Hysteresis: A Water-Level and Sediment-Based Strategy for Shallow Lakes
by Yasufumi Fujimoto, Yusuke Takahashi, Hiroki Hayami, Munehiro Nomura, Jun Yokoyama, Tetsuo Shimada and Osamu Nishimura
Water 2025, 17(12), 1760; https://doi.org/10.3390/w17121760 - 12 Jun 2025
Viewed by 809
Abstract
Long-term sedimentation patterns influence the ecological succession of shallow lakes. However, human-induced impacts can disrupt these processes, leading to prolonged hysteresis. Using historical sedimentation data, we simulated the future terrestrialization of Lake Izunuma-Uchinuma, a Ramsar-listed wetland in Japan. The results indicated that ecotone [...] Read more.
Long-term sedimentation patterns influence the ecological succession of shallow lakes. However, human-induced impacts can disrupt these processes, leading to prolonged hysteresis. Using historical sedimentation data, we simulated the future terrestrialization of Lake Izunuma-Uchinuma, a Ramsar-listed wetland in Japan. The results indicated that ecotone recovery would take over 150 years, highlighting the strong legacy effects of shoreline vegetation loss. To accelerate restoration, we implemented an integrated approach that combined water-level management with sediment stabilization structures, including fences and coconut mat rolls. Over three years, these interventions successfully restored shoreline sediment accumulation, facilitated the re-establishment of Zizania latifolia (from 328 m2 to 1537 m2 in Ecotone 1), and improved water quality and waterbird use. Waterbird abundance significantly increased (p < 0.05) in the treated zones, and sediment exposure led to a reduction in COD release, indicating improved substrate conditions. Our results suggest that proactive ecotone restoration strategies, including hydrological regulation and sediment management, are essential in lakes where natural recovery is hindered by long-term sedimentation deficits and water-level changes. This study highlights the importance of integrating these measures to mitigate hysteresis and enhance ecosystem resilience in degraded shallow lakes. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

43 pages, 6263 KiB  
Article
Lateglacial to Mid-Holocene Vegetation History in the Eastern Vale of Pickering, Northeast Yorkshire, UK: Pollen Diagrams from Palaeolake Flixton
by Ian G. Simmons, Gaynor E. Cummins, Barry Taylor and James B. Innes
Quaternary 2022, 5(4), 52; https://doi.org/10.3390/quat5040052 - 8 Dec 2022
Cited by 4 | Viewed by 4552
Abstract
Palaeolake Flixton, in the eastern Vale of Pickering in northeast Yorkshire, UK, existed as open water during the Lateglacial and early to mid-Holocene, until hydroseral succession and gradual terrestrialisation changed it to an area of fen and basin peatland by the later mid-Holocene. [...] Read more.
Palaeolake Flixton, in the eastern Vale of Pickering in northeast Yorkshire, UK, existed as open water during the Lateglacial and early to mid-Holocene, until hydroseral succession and gradual terrestrialisation changed it to an area of fen and basin peatland by the later mid-Holocene. The environs of the lake were occupied by Late Palaeolithic and Mesolithic people over thousands of years and many Early Mesolithic sites, in particular, have been found located along the ancient lake edge, including the paradigm site for the British Early Mesolithic at Star Carr, where occupation occurred over several centuries. We have analysed eleven sediment cores, distributed in most parts of the palaeolake area, for pollen and stratigraphic data with which to reconstruct lake development and vegetation history. These new diagrams augment earlier pollen studies from the western part of the lake, particularly in the Star Carr area and near other major Mesolithic sites around Seamer Carr. Especially informative are a long core from the deepest part of the lake; cores that document the Lateglacial as well as early Holocene times, and evidence for the later Mesolithic that helps to balance the high density of Late Mesolithic sites known from research in the adjacent uplands of the North York Moors. There are many records of charcoal in the deposits but, especially for the earliest examples, it is not always possible to tie them firmly to either human activity or natural causes. Overall, the new and previously existing diagrams provide evidence for the spatial reconstruction of vegetation history across this important wetland system, including (a) for the progression of natural community successions within the wetland and on the surrounding dryland (b) the influence of climate change in bringing about changes in woodland composition and (c) for discussion of the possibility of human manipulation of the vegetation in the Late Upper Palaeolithic, Early and Late Mesolithic. Results show that climate was the main driver of longer-term vegetation change. Centennial-scale, abrupt climate events caused significant vegetation reversals in the Lateglacial Interstadial. The Lateglacial vegetation was very similar throughout the lake hinterland, although some areas supported some scrubby shrub rather than being completely open. Immigration and spread of Holocene woodland taxa comprised the familiar tree succession common in northern England but the timings of the establishment and the abundance of some individual tree types varied considerably around the lake margins because of edaphic factors and the effects of fire, probably of human origin. Woodland successions away from proximity to the lake were similar to those recorded in the wider landscape of northern England and produced a dense, homogenous forest cover occasionally affected by fire. Full article
(This article belongs to the Special Issue Climate Change and Vegetation Evolution during the Holocene)
Show Figures

Figure 1

Back to TopTop