Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hydronic radiant cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3505 KiB  
Article
A Novel Direct-Expansion Radiant Floor System Utilizing Water (R-718) for Cooling and Heating
by Fadi Alsouda, Nick S. Bennett, Suvash C. Saha and Mohammad S. Islam
Energies 2024, 17(17), 4520; https://doi.org/10.3390/en17174520 - 9 Sep 2024
Cited by 1 | Viewed by 1235
Abstract
While forced-air convective systems remain the predominant method for heating and cooling worldwide, radiant cooling and heating systems are emerging as a more efficient alternative. Current radiant cooling systems primarily rely on hydronic chilled water systems. This study introduces direct-expansion radiant cooling as [...] Read more.
While forced-air convective systems remain the predominant method for heating and cooling worldwide, radiant cooling and heating systems are emerging as a more efficient alternative. Current radiant cooling systems primarily rely on hydronic chilled water systems. This study introduces direct-expansion radiant cooling as a novel technique that could enhance the efficiency of radiant cooling and reduce its environmental impact. Water (R-718) has been tested as a refrigerant due to its favorable thermodynamic properties and environmental advantages; however, to the author’s knowledge, it has yet to be tested in direct-expansion radiant cooling. This research investigated several refrigerants, including water (R-718), ammonia (R-717), R-410a, R-32, R-134a, and R-1234yf, for this application. The findings indicate that water demonstrates efficiency comparable to other non-natural refrigerants, making it a promising candidate, given its favorable thermodynamic properties and substantial environmental benefits. Despite challenges such as a high compression ratio necessitating multi-stage compression, a high compressor discharge temperature exceeding 300 °C and requiring specialized blade materials, and a high suction volume flow rate, direct-expansion radiant cooling operates within a different temperature range. Consequently, the compressor discharge temperature can be reduced to 176 °C, and the compression ratio can be lowered to approximately 3.5, making water a more viable refrigerant option for this application. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 5935 KiB  
Article
Space Cooling Energy Potential of Domestic Cold Water before Household Consumption in Cold-Climate Regions
by Mohammad Rezvanpour and Yuxiang Chen
Buildings 2023, 13(6), 1491; https://doi.org/10.3390/buildings13061491 - 9 Jun 2023
Cited by 1 | Viewed by 1920
Abstract
Space cooling energy consumption in residential buildings has tripled globally over the past three decades, leading to a significant increase in greenhouse gas (GHG) emissions and building operating costs. To reduce building cooling energy consumption, cooling energy can be recovered from domestic cold [...] Read more.
Space cooling energy consumption in residential buildings has tripled globally over the past three decades, leading to a significant increase in greenhouse gas (GHG) emissions and building operating costs. To reduce building cooling energy consumption, cooling energy can be recovered from domestic cold water (DCW) for space cooling by circulating DCW through thermally massive walls (herein “DCW-wall”) before regular household consumption (e.g., showers). This approach is more effective in cold climate regions since the DCW is cooler in these regions, yet its engineering design and effectiveness have not been evaluated previously. This study evaluated the cooling potential of DCW-walls in different operation scenarios (e.g., inlet temperatures, zone temperatures, and piping configurations). A typical DCW usage pattern and a daily amount of 1200 L were selected for evaluation. Three-dimensional transient thermal simulations were used to obtain the water outlet temperatures, average wall surface temperatures, and cooling potentials. The results showed that a DCW wall with a spiral piping configuration and DCW inlet at 12 °C can deliver 21.92 MJ of cooling energy daily to a zone at 25 °C. This amount of free energy can cover up to approximately 11% of the annual cooling energy demand of a four-person dwelling in Toronto, Canada, which has a warm and humid summer. Full article
Show Figures

Figure 1

14 pages, 3561 KiB  
Article
Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings
by Ricardo M. S. F. Almeida, Romeu da Silva Vicente, António Ventura-Gouveia, António Figueiredo, Filipe Rebelo, Eduardo Roque and Victor M. Ferreira
Materials 2022, 15(3), 1015; https://doi.org/10.3390/ma15031015 - 28 Jan 2022
Cited by 13 | Viewed by 3438
Abstract
The radiant floor system market is growing rapidly because Europe is moving toward a low-carbon economy and increased awareness about environmental sustainability and energy efficiency, stimulated by the ambitious EU Energy Efficient Directive and nZEB challenge. The high growth rate of the market [...] Read more.
The radiant floor system market is growing rapidly because Europe is moving toward a low-carbon economy and increased awareness about environmental sustainability and energy efficiency, stimulated by the ambitious EU Energy Efficient Directive and nZEB challenge. The high growth rate of the market share is due to the involvement of homeowners in the specifications of their living commodities, so they are thus willing to invest more at the initial stage to obtain long-term benefits and lower energy exploration costs. We performed an experimental campaign over three slabs with a hydronic radiant floor system of equal dimensions, shape, and pipe pitch with different screed mortar formulations to assess their performance throughout a heating/cooling cycle. The temperature at different heights within the interior of the screed mortars and at the surface were monitored. The results revealed that an improved screed mortar has a relevant impact on the efficiency of the system. Moreover, a three-dimensional transient heat transfer model was validated using the experimental data. The model was used to evaluate the impact of different finishing materials, namely wood, cork, ceramic, and linoleum, on the floor surface temperatures. The results showed differences of 15% in the surface temperature when using different floor finishing solutions. Full article
Show Figures

Figure 1

20 pages, 6257 KiB  
Article
The Impacts of a Building’s Thermal Mass on the Cooling Load of a Radiant System under Various Typical Climates
by Rong Hu, Gang Liu and Jianlei Niu
Energies 2020, 13(6), 1356; https://doi.org/10.3390/en13061356 - 14 Mar 2020
Cited by 19 | Viewed by 4921
Abstract
Cooling load is difficult to predict for a radiant system, because the interaction between a building’s thermal mass and radiation heat gain has not been well defined in a zone with a cooling surface. This study aims to reveal the effect of thermal [...] Read more.
Cooling load is difficult to predict for a radiant system, because the interaction between a building’s thermal mass and radiation heat gain has not been well defined in a zone with a cooling surface. This study aims to reveal the effect of thermal mass in an external wall on the transmission load in a space with an active cooling surface. We investigated the thermal performances in a typical office building under various weather conditions by dynamic simulation with Energy-Plus. It was found that the thermal mass in the inside concrete layer had positives in terms of indoor temperature performance and energy conservation. The peak cooling load of the hydronic system decreases 28% in the proper operating state, taking into account the effect of the thermal mass in an external wall. Compared to the performances in zones with equivalent convective air systems (CASs), the peak cooling load and the accumulated load of the combined system (radiant system coupled by fresh air system) are higher by 9%–11% and 3%–4%, respectively. The effect of thermal mass is evident in a transient season with mild weather, when the relative effects are about 45% and 60%, respectively, for a building with radiant systems and a building with equivalent CASs. Full article
(This article belongs to the Special Issue Life Cycle & Technoeconomic Modeling)
Show Figures

Graphical abstract

Back to TopTop