Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hybrid photonic nanoarchitecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2118 KiB  
Article
Hybrid Bio-Nanocomposites by Integrating Nanoscale Au in Butterfly Scales Colored by Photonic Nanoarchitectures
by Krisztián Kertész, Gábor Piszter, Andrea Beck, Anita Horváth, Gergely Nagy, György Molnár, György Zoltán Radnóczi, Zsolt Endre Horváth, Levente Illés and László Péter Biró
Photonics 2023, 10(11), 1275; https://doi.org/10.3390/photonics10111275 - 17 Nov 2023
Cited by 2 | Viewed by 1442
Abstract
Plasmonic metallic nanoparticles, like Au, can be used to tune the optical properties of photonic nanoarchitectures occurring in butterfly wing scales possessing structural color. The effect of the nanoscale Au depends on the location and the amount deposited in the chitin-based photonic nanoarchitecture. [...] Read more.
Plasmonic metallic nanoparticles, like Au, can be used to tune the optical properties of photonic nanoarchitectures occurring in butterfly wing scales possessing structural color. The effect of the nanoscale Au depends on the location and the amount deposited in the chitin-based photonic nanoarchitecture. The following three types of Au introduction methods were compared regarding the structural and optical properties of the resulting hybrid bio-nanocomposites: (i) growth of Au nanoparticles inside the nanopores of butterfly wing scales by a light-induced in situ chemical reduction of HAuCl4 in aqueous solution containing sodium citrate, as a new procedure we have developed, (ii) drop-drying of the aqueous Au sol formed during procedure (i) in the bulk liquid phase, and (iii) physical vapor deposition of Au thin film onto the butterfly wing. We investigated all three methods at two different Au concentrations on the wings of laboratory-bred blue-colored male Polyommatus icarus butterflies and characterized the optical properties of the resulting hybrid bio-nanocomposites. We found that the drop-drying and the in situ growth produced comparable redshift in the spectral position of the reflectance maximum associated with the chitin-based photonic nanoarchitecture in the wing scales, while the 5 nm or 15 nm thick Au layers vacuum deposited onto the butterfly wing behaved like an optical filter, without inducing spectral shift. The in situ growth in the photonic nanoarchitecture under intense illumination produced uniform Au nanoparticles located in the pores of the biological template, which is more advantageous for further applications. An additional benefit of this method is that the Au nanoparticles do not aggregate on drying, like in the case of drop-drying of preformed Au nanoparticles from the citrate-stabilized sol. Full article
(This article belongs to the Special Issue Recent Advances in Micro-Nano Optics)
Show Figures

Figure 1

18 pages, 23743 KiB  
Article
Spectral Engineering of Hybrid Biotemplated Photonic/Photocatalytic Nanoarchitectures
by Gábor Piszter, Krisztián Kertész, Dávid Kovács, Dániel Zámbó, Zsófia Baji, Levente Illés, Gergely Nagy, József Sándor Pap, Zsolt Bálint and László Péter Biró
Nanomaterials 2022, 12(24), 4490; https://doi.org/10.3390/nano12244490 - 19 Dec 2022
Cited by 6 | Viewed by 1931
Abstract
Solar radiation is a cheap and abundant energy for water remediation, hydrogen generation by water splitting, and CO2 reduction. Supported photocatalysts have to be tuned to the pollutants to be eliminated. Spectral engineering may be a handy tool to increase the efficiency [...] Read more.
Solar radiation is a cheap and abundant energy for water remediation, hydrogen generation by water splitting, and CO2 reduction. Supported photocatalysts have to be tuned to the pollutants to be eliminated. Spectral engineering may be a handy tool to increase the efficiency or the selectivity of these. Photonic nanoarchitectures of biological origin with hierarchical organization from nanometers to centimeters are candidates for such applications. We used the blue wing surface of laboratory-reared male Polyommatus icarus butterflies in combination with atomic layer deposition (ALD) of conformal ZnO coating and octahedral Cu2O nanoparticles (NP) to explore the possibilities of engineering the optical and catalytic properties of hybrid photonic nanoarchitectures. The samples were characterized by UV-Vis spectroscopy and optical and scanning electron microscopy. Their photocatalytic performance was benchmarked by comparing the initial decomposition rates of rhodamine B. Cu2O NPs alone or on the butterfly wings, covered by a 5 nm thick layer of ZnO, showed poor performance. Butterfly wings, or ZnO coated butterfly wings with 15 nm ALD layer showed a 3 to 3.5 times enhancement as compared to bare glass. The best performance of almost 4.3 times increase was obtained for the wings conformally coated with 15 nm ZnO, deposited with Cu2O NPs, followed by conformal coating with an additional 5 nm of ZnO by ALD. This enhanced efficiency is associated with slow light effects on the red edge of the reflectance maximum of the photonic nanoarchitectures and with enhanced carrier separation through the n-type ZnO and the p-type Cu2O heterojunction. Properly chosen biologic photonic nanoarchitectures in combination with carefully selected photocatalyst(s) can significantly increase the photodegradation of pollutants in water under visible light illumination. Full article
(This article belongs to the Special Issue Nanostructures for Advanced Photonic Devices)
Show Figures

Graphical abstract

16 pages, 4403 KiB  
Article
Effect of Plasmonic Au and Ag/Au Nanoparticles and Sodium Citrate on the Optical Properties of Chitin-Based Photonic Nanoarchitectures in Butterfly Wing Scales
by Krisztián Kertész, Gábor Piszter, Zsolt Endre Horváth, Dániel Zámbó, András Deák and László Péter Biró
Photonics 2022, 9(8), 553; https://doi.org/10.3390/photonics9080553 - 6 Aug 2022
Cited by 3 | Viewed by 3849
Abstract
Porous butterfly wings with hierarchically organized structures from nanometer to centimeter scales were tested as substrates for carrying plasmonic Au and Ag/Au nanoparticles with potential application in photocatalysis. Wings exhibiting structural color generated by chitin-air nanocomposites were used. Hundreds of butterfly species possess [...] Read more.
Porous butterfly wings with hierarchically organized structures from nanometer to centimeter scales were tested as substrates for carrying plasmonic Au and Ag/Au nanoparticles with potential application in photocatalysis. Wings exhibiting structural color generated by chitin-air nanocomposites were used. Hundreds of butterfly species possess these types of color-generating photonic nanoarchitectures, producing color by a similar mechanism to manmade photonic crystals. Artificial photonic crystals are known to enhance photocatalytic processes through the slow light effect. The impact of pure water, water-based sodium citrate solution, and Au and Ag/Au alloy nanoparticles on the optical properties of the natural photonic structures were separated. While water and aqueous sodium citrate solutions change the wing reflectance by the alteration of the wing scale position with respect to the wing plane, Au and Ag/Au alloy nanoparticles form a new, hybrid nanostructure with the chitin nanoarchitecture modifying the structural color of the butterfly wings. The optical properties of the new types of hybrid photonic nanoarchitectures (consisting of butterfly wings and plasmonic nanoparticles) are different from those of the components. Full article
(This article belongs to the Special Issue Advanced/Novel Photonics Nanostructures)
Show Figures

Figure 1

Back to TopTop