Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = hybrid maglev-derived systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4752 KiB  
Article
A New Concept of Hybrid Maglev-Derived Systems for Faster and More Efficient Rail Services Compatible with Existing Infrastructure
by Jesus Felez, Miguel A. Vaquero-Serrano, David Portillo, Santiago Antunez, Giuseppe Carcasi, Angela Nocita, Michael Schultz-Wildelau, Lorenzo A. Parrotta, Gerardo Fasano and Pietro Proietti
Sustainability 2025, 17(11), 5056; https://doi.org/10.3390/su17115056 - 30 May 2025
Viewed by 863
Abstract
Magnetic levitation (maglev) technology offers significant advantages for rail transport, including frictionless propulsion, reduced noise, and lower maintenance costs. However, its widespread adoption has been limited due to the need for a dedicated infrastructure incompatible with conventional rail networks. The MaDe4Rail project, funded [...] Read more.
Magnetic levitation (maglev) technology offers significant advantages for rail transport, including frictionless propulsion, reduced noise, and lower maintenance costs. However, its widespread adoption has been limited due to the need for a dedicated infrastructure incompatible with conventional rail networks. The MaDe4Rail project, funded by Europe’s Rail Joint Undertaking (ERJU), explores Maglev-Derived Systems (MDSs) as means to integrate maglev-inspired solutions into existing railway corridors with minimal modifications. This paper focuses on the so-called “hybrid MDS” configuration, which refers to levitating systems that can operate on existing rail infrastructure. Unlike current maglev systems, which require dedicated tracks, the proposed MDS system is designed to operate on conventional rail tracks, allowing for its compatibility with traditional trains and ensuring the interoperability of lines. In order to identify the most viable solution, two different configurations have been analysed. The evaluated scenario could benefit from the introduction of hybrid MDSs based on magnetic levitation, where a group of single vehicles, also called pods, is used in a virtual coupling configuration. The objective of this case study is to increase the capacity of traffic on the existing railway line by significantly reducing travel time, while maintaining a similar energy consumption to that of the current conventional trains operating on this line. Simulation results indicate that the hybrid MDS can optimise railway operations by taking advantage of virtual coupling to improve traffic flow, reducing travel times and energy consumption with the optimisation of the aerodynamic drag. The system achieves a balance between increased speed and energy efficiency, making it a viable alternative for future rail transport. An initial cost–benefit analysis suggests that the hybrid MDS could deliver substantial economic advantages, positioning it as a promising solution for enhancing European railway networks with minimal infrastructure investment. Full article
Show Figures

Figure 1

Back to TopTop