Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hot roller embossing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2943 KB  
Article
Investigation of an Innovative Roll-to-Plate (R2P) Hot-Embossing Process for Microstructure Arrays of Infrared Glass
by Qinjun Li, Kangsen Li, Jinyu Lv, Linglong Tao and Feng Gong
Micromachines 2024, 15(11), 1307; https://doi.org/10.3390/mi15111307 - 28 Oct 2024
Cited by 1 | Viewed by 2112
Abstract
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by [...] Read more.
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by the potential of chalcogenide glass to surpass conventional materials in terms of performance. However, the development of R2P hot embossing faces challenges, such as the high cost of curved mold manufacturing, the reliance on roll-to-roll processes for nano hot embossing, the limitations of plastic materials, and the unclear viscoelastic properties of infrared glass. In this study, a novel R2P hot-embossing process was developed to fabricate flat chalcogenide glass structures. The key parameters, such as roller temperature, speed, and embossing pressure, were investigated to understand their impact on the glass-filling performance. The deformation mechanism of the glass microstructures was also analyzed. The experimental results show that the R2P hot-embossing method offers excellent reproducibility, achieving a maximum filling rate of 96% and an average roughness deviation of 8.36 nm. The increase in the roller temperature and embossing force increased the filling height of the glass microstructure arrays, while an increase in the roller speed decreased the filling height. Different embossing methods, including variations in speed, temperature, and force, are summarized to analyze the structural changes during embossing. This study provides a foundation and a basis for future research on the roller-to-plate hot embossing process. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices)
Show Figures

Figure 1

19 pages, 6785 KB  
Article
Development of Belt-Type Microstructure Array Flexible Mold and Asymmetric Hot Roller Embossing Process Technology
by Yung-Jin Weng
Coatings 2019, 9(4), 274; https://doi.org/10.3390/coatings9040274 - 22 Apr 2019
Cited by 5 | Viewed by 4534
Abstract
This study proposed the belt-type microstructure array flexible mold designed hot roller embossing process technology. An extrusion molding system was integrated with belt-type hot roller embossing process technology and, deriving the asymmetric principle as the basis of prediction, designed a belt-type microstructure array [...] Read more.
This study proposed the belt-type microstructure array flexible mold designed hot roller embossing process technology. An extrusion molding system was integrated with belt-type hot roller embossing process technology and, deriving the asymmetric principle as the basis of prediction, designed a belt-type microstructure array hot roller embossing process system. This study first focused on the design and manufacturing of a belt-type hot roller embossing process system (roll to belt-type). It then carried out system integration and testing, along with the film extrusion system, to fabrication microstructure array production. Hot embossing was used to replicate the array of the plastic micro lens as the microstructure mold. The original master mold was fabricated with micro electromechanical technology and the PC micro lens array as the microstructure (inner layer) film using the gas-assisted hot embossing technology. A microstructure composite belt and magnetic belt were produced on the hot roller embossing by an innovated coated casting technique. The forming accuracy of the belt-type microstructure array flexible mold hot roller embossing process and the prediction precision of numerically simulated forming were discussed. The proposed process technology is expected to effectively reduce the process cycle time with the advantages of being a fast and continuous process. Full article
(This article belongs to the Special Issue Design, Manufacturing and Measurement of Optical Film Coatings)
Show Figures

Figure 1

13 pages, 810 KB  
Article
Extrusion Roller Imprinting with a Variotherm Belt Mold
by Raymond Frenkel, Byung Kim and Donggang Yao
Machines 2014, 2(4), 299-311; https://doi.org/10.3390/machines2040299 - 18 Dec 2014
Cited by 8 | Viewed by 9253
Abstract
Although many precision fabrication techniques have demonstrated the ability to produce microstructures and micro-devices with sub 100 nm accuracy, we are yet to see a scalable manufacturing process for large-area production. One promising solution to scalable micro- and nanofabrication is thermal roller imprinting. [...] Read more.
Although many precision fabrication techniques have demonstrated the ability to produce microstructures and micro-devices with sub 100 nm accuracy, we are yet to see a scalable manufacturing process for large-area production. One promising solution to scalable micro- and nanofabrication is thermal roller imprinting. However, existing investigations on thermal roller imprinting revealed poor pattern transfer fidelity, especially for high aspect ratio features. The standard roller imprinting process suffers from the lack of an effective holding and cooling stage so that the adverse effects from the viscoelastic nature of polymers are not managed. To rectify this problem and further improve the production rate, a new extrusion roller imprinting process with a variotherm belt mold is designed, and its prototype was established at a laboratory scale. The process testing results demonstrate that a 30 μm sawtooth pattern can be faithfully transferred to extruded polyethylene film at take-up speeds higher than 10 m/min. The results are promising in that microfeatures or even nanofeatures may be successfully replicated by a robust and scalable industrial process suitable for large-area, continuous production. Full article
(This article belongs to the Special Issue Advances and Challenges in Manufacturing Automation)
Show Figures

Graphical abstract

Back to TopTop