Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = hinokiflavone 7″-O-β-glucopyranoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5387 KiB  
Article
Cytotoxic Natural Products from Cryptomeria japonica (Thunb. ex L.) D.Don
by Bjørn Tobiassen Heieren, Anja Strandvoll Dyrdal, Lars Herfindal, Bjarte Holmelid, Cato Brede, Heidi Lie Andersen and Torgils Fossen
Int. J. Mol. Sci. 2024, 25(24), 13735; https://doi.org/10.3390/ijms252413735 - 23 Dec 2024
Viewed by 1163
Abstract
Cryptomeria japonica is a commercially important tree native to Japan. The tree belongs to the ancient genus Cryptomeria and has found important uses as a medicinal plant, as well as a main source of timber in Japan. In recent years, there has been [...] Read more.
Cryptomeria japonica is a commercially important tree native to Japan. The tree belongs to the ancient genus Cryptomeria and has found important uses as a medicinal plant, as well as a main source of timber in Japan. In recent years, there has been an increased interest in discovering extended uses of C. japonica as a source of novel bioactive natural products with potential applications as lead compounds for active principles of future drugs. The compounds were isolated by a combination of two-phase extraction, XAD-7 Amberlite column chromatography, Sephadex LH-20 column chromatography and preparative High Performance Liquid Chromatography (HPLC). The structures were determined by a combination of several 1D and 2D Nuclear Magnetic Resonance (NMR) experiments and high-resolution mass spectrometry. Here, we report on the isolation and characterization of the novel biflavone glucoside hinokiflavone 7″-O-β-glucopyranoside, in addition to sixteen known compounds including the flavonols quercetin, quercetin 3-O-α-rhamnopyranoside and quercetin 3-O-β-galactopyranoside, the dihydroflavonols taxifolin 3-O-β-glucopyranoside, taxifolin 7-O-β-glucopyranoside, the flavanones naringenin, naringenin 7-O-β-galactopyranoside and eriodictyol 4′-O-β-glucopyranoside, the flavanol catechin, the biflavonoid amentoflavone, the dihydrochalcone phloretin 2′-O-β-glucopyranoside, the sesquiterpenoid roseoside, the polyphenolic compounds chlorogenic acid, methyl chlorogenate and the flavanocoumarins catechin-(7,8)-7″-(3,4 dihydroxyphenyl)-dihydro-8″(3H)-pyranone, and mururin A. The compounds exhibited low-to-moderate cytotoxic activity against MOLM-13 leukemia cells. Full article
Show Figures

Figure 1

Back to TopTop