Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = highway connector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9610 KiB  
Article
Research on the Design and Application of a Novel Curved-Mesh Circumferential Drainage Blind Pipe for Tunnels in Water-Rich Areas
by Wenti Deng, Xiabing Liu, Shaohui He and Jianfei Ma
Infrastructures 2025, 10(8), 199; https://doi.org/10.3390/infrastructures10080199 - 28 Jul 2025
Viewed by 220
Abstract
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering [...] Read more.
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering surveys and comparative analysis, the limitations and application demands of conventional circumferential annular drainage blind pipes in highway tunnels were identified. Based on this, the key parameters of the new blind pipe—including material, wall thickness, and aperture size—were determined. Laboratory tests were then conducted to evaluate the performance of the newly developed pipe. Subsequently, the pipe was applied in a real-world tunnel project, where a construction process and an in-service blockage inspection method for circumferential drainage pipes were proposed. Field application results indicate that, compared to commonly used FH50 soft permeable pipes and F100 semi-split spring pipes, the novel curved-mesh drainage blind pipe exhibits superior circumferential load-bearing capacity, anti-clogging performance, and deformation resistance. The proposed structure provides a total permeable area exceeding 17,500 mm2, three to four times larger than that of conventional drainage pipes, effectively meeting the drainage requirements behind tunnel linings in high-water-content zones. The use of four-way connectors enhanced integration with other drainage systems, and inspection of the internal conditions confirmed that the pipe remained free of clogging and deformation. Furthermore, the curved-mesh design offers better conformity with the primary support and demonstrates stronger adaptability to complex installation conditions. Full article
Show Figures

Figure 1

32 pages, 9287 KiB  
Article
Fatigue and Ultimate Strength Evaluation of GFRP-Reinforced, Laterally-Restrained, Full-Depth Precast Deck Panels with Developed UHPFRC-Filled Transverse Closure Strips
by Mahmoud Sayed Ahmed, Khaled Sennah and Hamdy M. Afefy
Appl. Sci. 2024, 14(19), 8806; https://doi.org/10.3390/app14198806 - 30 Sep 2024
Cited by 6 | Viewed by 1606
Abstract
A depth precast deck panel (FDDP) is one element of the prefabricated bridge element and systems (PBES) that allows for quick un-shored assembly of the bridge deck on-site as part of the accelerated bridge construction (ABC) technology. This paper investigates the structural response [...] Read more.
A depth precast deck panel (FDDP) is one element of the prefabricated bridge element and systems (PBES) that allows for quick un-shored assembly of the bridge deck on-site as part of the accelerated bridge construction (ABC) technology. This paper investigates the structural response of full-depth precast deck panels (FDDPs) constructed with new construction materials and connection details. FDDP is cast with normal strength concrete (NSC) and reinforced with high modulus (HM) glass fiber reinforced polymer (GFRP) ribbed bars. The panel-to-girder V-shape connections use the shear pockets to accommodate the clustering of the shear connectors. A novel transverse connection between panels has been developed, featuring three distinct female-to-female joint configurations, each with 175-mm projected GFRP bars extending from the FDDP into the closure strip, complemented by a female vertical shear key and filled with cementitious materials. The ultra-high performance fiber reinforced concrete (UHPFRC) was selectively used to joint-fill the 200-mm transverse joint between adjacent precast panels and the shear pockets connecting the panels to the supporting girders to ensure full shear interaction. Two actual-size FDDP specimens for each type of the three developed joints were erected to perform fatigue tests under the footprint of the Canadian Highway Bridge Design Code (CHBDC) truck wheel loading. The FDDP had a 200-mm thickness, 2500-mm width, and 2400-mm length in traffic direction; the rest was over braced steel twin girders. Two types of fatigue test were performed: incremental variable amplitude fatigue (VAF) loading and constant amplitude fatigue (CAF) loading, followed by monotonically loading the slab ultimate-to-collapse. It was observed that fatigue test results showed that the ultimate capacity of the slab under VAF loading or after 4 million cycles of CAF exceeded the factored design wheel load specified in the CHBDC. Also, the punching shear failure mode was dominant in all the tested FDDP specimens. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 3575 KiB  
Article
Impact of the “Krakow East–Bochnia” Road Transport Corridor on the Form of the Functio-Spatial Structure and Its Economic Activity
by Tomasz Bajwoluk and Piotr Langer
Sustainability 2022, 14(14), 8281; https://doi.org/10.3390/su14148281 - 6 Jul 2022
Cited by 7 | Viewed by 1961
Abstract
This paper presents the findings of a study on the impact of the transformation of a road transport corridor on the form of a functio-spatial structure, as determined by the placement of significant economic activity sites within this corridor. The investigation of relations [...] Read more.
This paper presents the findings of a study on the impact of the transformation of a road transport corridor on the form of a functio-spatial structure, as determined by the placement of significant economic activity sites within this corridor. The investigation of relations and interdependencies in the development of the road transport system and development structure transformation processes allowed for the identification of tendencies in the shaping of space, as well as for building models that reflect the transformation of the road corridor under study. The study focused on a fragment of the road transport corridor between Kraków and Bochnia (called the “Kraków East–Bochnia” corridor), as a distinctive case of contemporary transformations of the functio-spatial structure that happen under the influence of the construction and opening of a section of highway A4. The study was based on original field work, a review of the literature and an analysis of applicable planning documents. GIS tools, cartographic resources and satellite images were also used. The transformation of the area under investigation and the increase in its accessibility due to the presence of the highway pointed to the area’s high attractiveness in terms of real estate development—especially at nodal sites along the linkages that connected the highway with other elements of the road corridor. The relationships between the completed highway section and the previous road layout are crucial to the emergence of economic activity sites and areas, and thus lead to a transformation of developed space following a new spatial model. Full article
(This article belongs to the Special Issue The Role of Transport Infrastructure in Regional Development)
Show Figures

Figure 1

Back to TopTop