Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = high-resolution rainfall forecast in Vietnam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19605 KiB  
Article
Skill Validation of High-Impact Rainfall Forecasts over Vietnam Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) and Dynamical Downscaling with the Weather Research and Forecasting Model
by Tran Anh Duc, Mai Van Khiem, Mai Khanh Hung, Dang Dinh Quan, Do Thuy Trang, Hoang Gia Nam, Lars R. Hole and Du Duc Tien
Atmosphere 2025, 16(2), 224; https://doi.org/10.3390/atmos16020224 - 16 Feb 2025
Viewed by 1566
Abstract
This research evaluates the quality of high-impact rainfall forecasts across Vietnam and its sub-climate regions. The 3-day rainfall forecast products evaluated include the European Centre for Medium-Range Weather Forecasts (ECMWF) High-Resolution Integrated Forecasting System (IFS) and its downscaled outputs using the Weather Research [...] Read more.
This research evaluates the quality of high-impact rainfall forecasts across Vietnam and its sub-climate regions. The 3-day rainfall forecast products evaluated include the European Centre for Medium-Range Weather Forecasts (ECMWF) High-Resolution Integrated Forecasting System (IFS) and its downscaled outputs using the Weather Research and Forecasting (WRF) model with the Advanced Research WRF core (WRF-ARW): direct downscaling and downscaling with data assimilation. A full 5-year validation period from 2019 to 2025 was processed. The validation focused on basic rainfall thresholds and also considered the distribution of skill scores for intense events and extreme events. The validations revealed systematic errors (bias) in the models at low rainfall thresholds. The forecast skill was the lowest for northern regions, while the central regions exhibited the highest. For regions strongly affected by terrain, high-resolution downscaling with local observation data assimilation is necessary to improve the detectability of extreme events. Full article
(This article belongs to the Special Issue Precipitation Observations and Prediction (2nd Edition))
Show Figures

Figure 1

Back to TopTop