Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = high-alumina pyroxene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6612 KiB  
Article
Fusion Separation of Vanadium-Titanium Magnetite and Enrichment Test of Ti Element in Slag
by Shuangping Yang, Shouman Liu, Shijie Guo, Tiantian Zhang and Jianghan Li
Materials 2022, 15(19), 6795; https://doi.org/10.3390/ma15196795 - 30 Sep 2022
Cited by 4 | Viewed by 2409
Abstract
In view of the problem that the enrichment and migration law of the Ti element in the slag of vanadium-titanium magnetite during the melting process is not clear, the phase transformation is not clear and the enrichment effect is not obvious, the single [...] Read more.
In view of the problem that the enrichment and migration law of the Ti element in the slag of vanadium-titanium magnetite during the melting process is not clear, the phase transformation is not clear and the enrichment effect is not obvious, the single factor experiment and orthogonal experiment are used to optimize the melting conditions of Ti enrichment. Through XRD, SEM and EDS analysis, the effects of melting temperature, alkalinity and carbon content on the Ti phase in the slag are studied, and the occurrence form and migration law of the Ti element in the slag system under different melting conditions are clarified. The results demonstrate that increasing the basicity and melting temperature is beneficial to the enrichment of Ti, but it is too high it will lead to the formation of pyroxene, diopside and magnesia-alumina spinel, affecting the enrichment of Ti. The increase in carbon content can make Ti occur in slag in the form of titanium oxides such as TiO, TiO2, Ti2O3 and Ti3O5, but excessive carbon content leads to the excessive reduction of Ti compounds to TiCN and TiC. After optimization, under the melting conditions of alkalinity 1.2, the melting temperature 1500 °C and carbon content 15%, the content of Ti in slag can reach 18.84%, and the recovery rate is 93.54%. By detecting the content of Fe and V in molten iron, the recovery rates are 99.86% and 95.64%, respectively. Full article
(This article belongs to the Topic Advanced Processes in Metallurgical Technologies)
Show Figures

Figure 1

29 pages, 10783 KiB  
Article
Kelyphite Rims on Garnets of Contrast Parageneses in Mantle Xenoliths from the Udachnaya-East Kimberlite Pipe (Yakutia)
by Lyudmila Pokhilenko
Minerals 2021, 11(6), 615; https://doi.org/10.3390/min11060615 - 8 Jun 2021
Cited by 7 | Viewed by 3875
Abstract
A new classification of kelyphitic rims on garnets from xenoliths of peridotitic and eclogitic parageneses of the mantle section under the Udachnaya-East kimberlite pipe (Yakutia) is presented. Five types of rims are identified: Rim1 develops between garnet and olivine/pyroxene (or rim2) and is [...] Read more.
A new classification of kelyphitic rims on garnets from xenoliths of peridotitic and eclogitic parageneses of the mantle section under the Udachnaya-East kimberlite pipe (Yakutia) is presented. Five types of rims are identified: Rim1 develops between garnet and olivine/pyroxene (or rim2) and is composed of high-alumina pyroxenes, spinel, phlogopite; rim2, the coarse grain part of rim1, is located between rim1 and olivine/pyroxene, and mainly consists of phlogopite and less aluminous larger pyroxenes and spinel; rim3 develops between garnet and kimberlite, and presents with phlogopite and Fe-Ti spinel; rim4 sometimes presents instead of rim1/rim2 and consists of zoned high-Cr phlogopite with rare fine grains of chromium spinel; rim5, a “pocket” between garnet and rim1, is represented by microcrystalline aggregates of clinopyroxene, mica, spinel, calcite, and feldspar in different variations. Rims 1, 2, and 3 are typical for garnets of all studied parageneses. Rims 4 and 5 develop on high-Cr subcalcic garnets of the most depleted peridotites. Reactions of the formation of all types of rims are given in the article. Each type of kelyphite demonstrates a clear enrichment with a certain component: Rim1—MgO and alkalis; rim2—TiO2; rim3—FeO and TiO2; rim4—Cr2O3; and rim5—CaO, suggesting the multistage injection of different components by mantle fluid. Full article
Show Figures

Figure 1

Back to TopTop