Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = high heat flux (HHF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7845 KiB  
Article
High Heat Flux Testing of Graded W-Steel Joining Concepts for the First Wall
by Vishnu Ganesh, Daniel Dorow-Gerspach, Martin Bram, Christian Linsmeier, Jiri Matejicek and Monika Vilemova
Energies 2023, 16(9), 3664; https://doi.org/10.3390/en16093664 - 24 Apr 2023
Cited by 3 | Viewed by 2098
Abstract
The realization of the first wall (FW), which is composed of a protective tungsten (W) armor covering the structural steel material, is a critical challenge in the development of future fusion reactors. Due to the different coefficients of thermal expansion (CTE) of W [...] Read more.
The realization of the first wall (FW), which is composed of a protective tungsten (W) armor covering the structural steel material, is a critical challenge in the development of future fusion reactors. Due to the different coefficients of thermal expansion (CTE) of W and steel, the direct joining of them results in cyclic thermal stress at their bonding seam during the operation of the fusion reactor. To address this issue, this study benchmarks two joining concepts. The first concept uses an atmospheric plasma sprayed graded interlayer composed of W/steel composites with a varying content of W and steel to gradually change the CTE. The second concept uses a spark plasma sintered graded interlayer. Furthermore, in order to benchmark these concepts, a directly bonded W-steel reference joint as well as a W-steel joint featuring a vanadium interlayer were also tested. These joints were tested under steady-state high heat flux cyclic loading, starting from a heat flux of 1 MW/m2 up to 4.5 MW/m2, with stepwise increments of 0.5 MW/m2. At each heat flux level, 200 thermal cycles were performed. The joints featuring a sintered graded interlayer survived only until 1.5 MW/m2 of loading, while the joint featuring plasma sprayed graded interlayer and V interlayer survived until 3 MW/m2. Full article
Show Figures

Figure 1

40 pages, 20187 KiB  
Article
Neutronics Assessment of the Spatial Distributions of the Nuclear Loads on the DEMO Divertor ITER-like Targets: Comparison between the WCLL and HCPB Blanket
by Simone Noce, Davide Flammini, Pasqualino Gaudio, Michela Gelfusa, Giuseppe Mazzone, Fabio Moro, Francesco Romanelli, Rosaria Villari and Jeong-Ha You
Appl. Sci. 2023, 13(3), 1715; https://doi.org/10.3390/app13031715 - 29 Jan 2023
Cited by 5 | Viewed by 1866
Abstract
The Plasma Facing Components (PFCs) of the divertor target contribute to the fundamental functions of heat removal and particle exhaust during fusion operation, being subjected to a very hostile and complex loading environment characterized by intense particles bombardment, high heat fluxes (HHF), varying [...] Read more.
The Plasma Facing Components (PFCs) of the divertor target contribute to the fundamental functions of heat removal and particle exhaust during fusion operation, being subjected to a very hostile and complex loading environment characterized by intense particles bombardment, high heat fluxes (HHF), varying stresses loads and a significant neutron irradiation. The development of a well-designed divertor target, which represents a crucial step in the realization of DEMO, needs the assessment of all these loads as accurately as possible, to provide pivotal data and indications for the design and structural performance prediction of the PFCs. In a particular way, this study is fully devoted to the comprehension of the distributions on the divertor target of the main nuclear loads due to neutron irradiation, performed for the first time using an extremely detailed approach. This work has been carried-out considering the latest configuration of the DEMO reactor, including the updated design of the divertor and ITER-Like PFCs geometry, varying the blanket layout (Water Cooled Lithium Lead—WCLL and Helium Cooled Pebble Bed—HCPB), thus evaluating the impact of the different blanket concept on the above-mentioned distributions. Neutronics analyses have been performed with MCNP5 Monte Carlo code and JEFF3.3 nuclear data libraries. 3D DEMO MCNP models have been created, focusing in particular on a thorough representation of the divertor and PFCs, allowing for the assessment of the distributions of the main nuclear loads: radiation damage (dpa/FPY), He-production rate (appm/FPY) and nuclear heating density (W/cm3) and total nuclear power deposition (MW). These results are presented by means of 2D maps and plots for each PFCs sub-component both for WCLL and HCPB blanket case: W-monoblocks, Cu-interlayers\CuCrZr-pipe and PFC-CB (Cassette Body) supports made of Eurofer steel. Full article
Show Figures

Figure 1

14 pages, 6203 KiB  
Article
A Water Loop Design for the CRAFT Project towards the Testing of CFETR Water-Cooled Blanket and Divertor
by Xiaoman Cheng, Zihan Liu, Songlin Liu, Changhong Peng, Wenjia Wang and Qixin Ling
Energies 2021, 14(21), 7354; https://doi.org/10.3390/en14217354 - 4 Nov 2021
Cited by 1 | Viewed by 2431
Abstract
As one of the tasks of the Comprehensive Research Facility for Fusion Technology (CRAFT), a High Heat Flux (HHF) testing device will be built to test the blanket and divertor of Chinese Fusion Engineering Testing Reactor (CFETR). The water loop is a key [...] Read more.
As one of the tasks of the Comprehensive Research Facility for Fusion Technology (CRAFT), a High Heat Flux (HHF) testing device will be built to test the blanket and divertor of Chinese Fusion Engineering Testing Reactor (CFETR). The water loop is a key system of the HHF testing device. The main objective of the water loop is to provide deionized water at specific temperature, pressure, and flow rate for different testing experiments of the water-cooled blanket and water-cooled divertor components. The design of the water loop has been through three major steps. Firstly, the water cooled blanket and divertor were designed and analyzed, in detail, for CFETR. Secondly, thermal hydraulic features of the prototypes were abstracted from the analyses results. Then, the experiment plan was made so that the preliminary design of the water loop was carried out. The third step was the engineering design, which was conducted through cooperation with an industrial enterprise with certifications. At present, the water loop is ready for fabrication and construction. The water loop will be completed, for commissioning operation, by August 2022, as scheduled. After that, the experiments will be carried out step by step and provide solid technical base to CFETR. Full article
(This article belongs to the Special Issue Thermal-Hydraulics in Nuclear Fusion Technology: R&D and Applications)
Show Figures

Graphical abstract

Back to TopTop