Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = high friction surface treatment (HFST)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3957 KB  
Article
Comparative Analysis of Lab-Data-Driven Models for International Friction Index Prediction in High Friction Surface Treatment (HFST)
by Alireza Roshan and Magdy Abdelrahman
Appl. Sci. 2025, 15(11), 6249; https://doi.org/10.3390/app15116249 - 2 Jun 2025
Cited by 1 | Viewed by 946
Abstract
High Friction Surface Treatments (HFSTs) are often utilized as a spot treatment to enhance selected areas with high friction demand rather than extended pavement sections and are helpful in increasing skid resistance and minimizing road accidents. A laboratory design approach was created to [...] Read more.
High Friction Surface Treatments (HFSTs) are often utilized as a spot treatment to enhance selected areas with high friction demand rather than extended pavement sections and are helpful in increasing skid resistance and minimizing road accidents. A laboratory design approach was created to assess the fundamental ideas behind the international friction index (IFI) concept and update the present IFI model parameters for HFST applications based on test findings to gain a better understanding of HFST performance. Two aggregate types in three sizes were tested under controlled polishing cycles. Friction and texture were measured using the Dynamic Friction Tester (DFT) and Circular Track Meter (CTM). Three physics-informed empirical models, including logarithmic, power law, and polynomial models, were selected to better represent texture effects, nonlinear scaling, and complex interactions between COF and MPD. Results show that friction performance varies with aggregate type, gradation, and polishing, and that traditional IFI parameters may not fully capture HFST behavior. Model refinements are suggested to better represent HFST surface characteristics with the lowest testing Root Mean Squared Error (RMSE) (0.049) and the highest predictive accuracy R2 (0.821); the logarithmic model was found to be the best. Sensitivity analysis revealed that IFI predictions are more sensitive to COF (ΔIFI: 14.3–17.7%) than MPD (ΔIFI: 1.5–6.0%) across all models. These results demonstrate how these models can improve HFST design and performance assessment while providing useful information for enhancing road safety. This process is a useful tool for evaluating HFST friction resistance in a lab setting since it calculates HFST skid resistance using results measured in the lab. Full article
Show Figures

Figure 1

17 pages, 5648 KB  
Article
Performance Evaluation of Highly Modified Asphalt-Based Binders in High Friction Surface Treatment: Comparative Study with Epoxy-Based System
by Alireza Roshan, Magdy Abdelrahman and Mohyeldin Ragab
Buildings 2025, 15(9), 1425; https://doi.org/10.3390/buildings15091425 - 23 Apr 2025
Cited by 2 | Viewed by 697
Abstract
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility [...] Read more.
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility challenges, have led to the search for substitute binders, including asphalt-based options. This study investigates the comparative performance of highly modified asphalt-based binders, including polymer-modified, mastic, and highly modified emulsions, in HFST applications using two aggregate types, Calcined Bauxite (CB) and Rhyolite with different gradations, with an emphasis on their frictional properties, durability, and resistance to polishing. Laboratory evaluations, including the Pendulum Tester (BPT), Dynamic Friction Testing Equipment (DFT), Surface Texture Measurement Apparatus (CTM), and Binder Bond Strength Test (BBS), were carried out to examine the Coefficient of Friction (COF), Mean Profile Depth (MPD), and aggregate bonding and retention. In terms of durability and friction, this study indicated that highly modified asphalt-based binders performed better than PG binders and conventional emulsions. The highest BPT values, both prior to and following polishing, were consistently observed for CB, with the emulsion containing the highest reactive polymer modifier showing the smallest decrease in BPT value (12.86% for CB and 10.34% for Rhyolite). Epoxy showed a greater COF retention over lengthy polishing cycles; however, highly polymer-modified (PM) binders like PG82-22 (PM) performed better than Epoxy under specific conditions. The macrotexture analysis revealed that Epoxy-based samples retained surface texture for further polishing cycles, while Mastic2 and PG82-22 (PM) also showed strong MPD retention. These findings highlight the importance of optimizing aggregate–binder combinations to ensure durable and effective HFST applications. Full article
(This article belongs to the Special Issue New Technologies for Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

18 pages, 6108 KB  
Article
Performance and Economic Evaluation of Asphalt-Based High Friction Surface Treatment (HFST) Applications
by Alireza Roshan and Magdy Abdelrahman
Appl. Sci. 2025, 15(2), 873; https://doi.org/10.3390/app15020873 - 17 Jan 2025
Cited by 4 | Viewed by 1185
Abstract
High Friction Surface Treatments (HFSTs) are recognized for enhancing friction between tires and road surfaces, with reduced road accidents being a key benefit. Epoxy-based HFSTs, though widely used, come with challenges like compatibility issues with existing pavements, higher installation and removal costs, and [...] Read more.
High Friction Surface Treatments (HFSTs) are recognized for enhancing friction between tires and road surfaces, with reduced road accidents being a key benefit. Epoxy-based HFSTs, though widely used, come with challenges like compatibility issues with existing pavements, higher installation and removal costs, and reduced durability tied to substrate quality. Recently, state agencies have increasingly focused on developing asphalt-based alternative binders for HFST applications as highlighted in the National Cooperative Highway Research Program (NCHRP) RFP #NCHRP 10-145. This study introduces asphalt-based HFSTs as an alternative to traditional epoxy-based treatments. Various aggregate types were examined for friction performance and the effect of polishing cycles on asphalt-based HFST. Tests such as the British Pendulum Test (BPT), Dynamic Friction Tester (DFT), and Circular Track Meter (CTM) were conducted to assess the Coefficient of Friction (COF) and Mean Profile Depth (MPD) before and after polishing cycles. Additionally, a Life Cycle Cost Analysis (LCCA) was performed to determine the economic advantages of asphalt-based HFSTs over epoxy treatments. The goal was to develop a method to convert diverse project and material data into comparable outputs like net present value (NPV), enabling comparisons between alternatives. Results from the LCCA demonstrated that the use of specific asphalt-based binders combined with optimized aggregate gradation not only achieves performance levels comparable to traditional HFST options but also improves cost efficiency. Full article
(This article belongs to the Special Issue Fracture Mechanics of Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

15 pages, 8212 KB  
Article
Impact of Aggregate Characteristics on Frictional Performance of Asphalt-Based High Friction Surface Treatments
by Alireza Roshan and Magdy Abdelrahman
CivilEng 2025, 6(1), 4; https://doi.org/10.3390/civileng6010004 - 14 Jan 2025
Cited by 5 | Viewed by 1664
Abstract
High Friction Surface Treatments (HFST) are recognized for their effectiveness in enhancing skid resistance and reducing road accidents. While Epoxy-based HFSTs are widely applied, they present limitations such as compatibility issues with existing pavements, high installation and removal costs, and durability concerns tied [...] Read more.
High Friction Surface Treatments (HFST) are recognized for their effectiveness in enhancing skid resistance and reducing road accidents. While Epoxy-based HFSTs are widely applied, they present limitations such as compatibility issues with existing pavements, high installation and removal costs, and durability concerns tied to substrate quality. As an alternative to traditional Epoxy-based HFSTs, this study investigated the effects of aggregate gradation as designated by agencies on the performance of asphalt-based HFST. Various aggregate types were assessed to evaluate friction performance and the impact of polishing cycles on non-Epoxy HFST. It was found that adjustments in aggregate size and gradation may be necessary when transitioning to asphalt-based HFSTs, given the different nature of asphalt as more temperature susceptible compared to Epoxy. Various asphalt binder grades were considered in this study. A series of tests, including the British Pendulum Test (BPT), Dynamic Friction Tester (DFT), Circular Track Meter (CTM), Micro-Deval (MD), and Aggregate Imaging Measurement System (AIMS), were conducted to measure Coefficient of Friction (COF), Mean Profile Depth (MPD), texture, and angularity before and after polishing cycles. The results showed that the COF in asphalt-based slabs decreased more significantly than in Epoxy-based slabs as polishing cycles increased for HFST and medium gradations. However, in coarse gradation, the COF of slabs using asphalt-based binder matched or even surpassed that of Epoxy after polishing. Notably, the PG88-16 binder for Calcined Bauxite (CB) had the smallest reduction in COF after 140K polishing cycles, with only a 19% decrease compared to a 23% reduction for Epoxy. Full article
(This article belongs to the Section Urban, Economy, Management and Transportation Engineering)
Show Figures

Figure 1

15 pages, 4915 KB  
Article
Influence of Aggregate Properties on Skid Resistance of Pavement Surface Treatments
by Alireza Roshan and Magdy Abdelrahman
Coatings 2024, 14(8), 1037; https://doi.org/10.3390/coatings14081037 - 15 Aug 2024
Cited by 9 | Viewed by 2273
Abstract
Skid resistance is a critical aspect for traffic safety since it significantly influences vehicle control and minimizes the distance required for emergency braking. The surface characteristics of pavements play a pivotal role in determining skid resistance. To achieve the optimal skid resistance performance, [...] Read more.
Skid resistance is a critical aspect for traffic safety since it significantly influences vehicle control and minimizes the distance required for emergency braking. The surface characteristics of pavements play a pivotal role in determining skid resistance. To achieve the optimal skid resistance performance, the pavement must sustain a specific level of friction. Thus, it is advantageous to apply surface treatments in areas that require enhanced friction. This study investigate the impact of factors such as the aggregate source, size, morphological properties, and abrasion levels on the skid resistance and frictional characteristics of a high-friction surface treatment (HFST). A complete investigation was conducted on HFST samples by analyzing the aggregate morphology using the Aggregate Image Measurement System and performing Micro-Deval abrasion testing. The skid resistance was evaluated with the British Pendulum Tester (BPT). The findings revealed that different aggregates and sizes exhibited varying behaviors post-polishing. Notably, fine-sized aggregates demonstrated higher British pendulum number (BPN) values, which indicate superior frictional performance. Models that predicted skid numbers based on the average texture and angularity indices initially demonstrated the balanced influences of both morphological properties before polishing. However, after polishing, the surface texture emerged as the primary determinant of the skid resistance, which overshadowed the angularity’s impact. Full article
(This article belongs to the Special Issue Friction, Wear, Lubrication and Mechanics of Surfaces and Interfaces)
Show Figures

Figure 1

13 pages, 1919 KB  
Article
Determination of Friction Performance of High Friction Surface Treatment Based on Alternative Macrotexture Metric
by Hua Zhao, Fulu Wei, Ce Wang, Shuo Li and Jie Shan
Materials 2021, 14(22), 6895; https://doi.org/10.3390/ma14226895 - 15 Nov 2021
Cited by 3 | Viewed by 2102
Abstract
Surface friction is currently the most common metric for evaluating the performance of high friction surface treatment (HFST). However, friction test methods such as the locked wheel skid tester (LWST) commonly provide a spot measurement. Large variations may arise in the LWST testing [...] Read more.
Surface friction is currently the most common metric for evaluating the performance of high friction surface treatment (HFST). However, friction test methods such as the locked wheel skid tester (LWST) commonly provide a spot measurement. Large variations may arise in the LWST testing on curves. Based on 21 actual HFST projects, a study was performed to use a macrotexture metric, i.e., the mean profile depth (MPD) to evaluate HFST’s performance and improve its quality control (QC)/quality assurance (QA) procedures. The material properties were presented to understand the aspects of HFST. The method for calculating MPD was modified to account for the variations of macrotexture measurements. A vehicle-based test system was utilized to measure MPD periodically over an 18-month period since HFST installation. Statistical analysis was performed on the MPD measurements to identify the effects of influencing factors. Compared with the friction from LWST, MPD was equally effective in evaluating HFST performance. However, the use of MPD eliminated the errors as arisen in LWST testing and made it possible to detect surface distresses, including aggregate loss, delamination, and cracking. The expected overall MPD may be calculated by combining the MPD measurements made three months after installation at different HFST sites and used as a metric for evaluating HFST performance and QC/QA. Full article
Show Figures

Figure 1

15 pages, 1419 KB  
Article
Effect of Characteristics of Different Types of Bauxite Clinker on Adhesion
by Xirong Wu, Nanxiang Zhen and Fansheng Kong
Appl. Sci. 2019, 9(22), 4746; https://doi.org/10.3390/app9224746 - 7 Nov 2019
Cited by 4 | Viewed by 2693
Abstract
Based on the fact that bauxite clinker has minor thermal conductivity and better skid resistance and wear-resisting property, it can be used in HFST (high friction surface treatment) or the abrasion layer of asphalt mixture to replace or partly replace the existing aggregate. [...] Read more.
Based on the fact that bauxite clinker has minor thermal conductivity and better skid resistance and wear-resisting property, it can be used in HFST (high friction surface treatment) or the abrasion layer of asphalt mixture to replace or partly replace the existing aggregate. Bauxite clinker is classified into mainly six types according to different chemical composition contents. The selection of bauxite clinker as aggregate is not only for the economic value, but also for improving the adhesion between aggregate and asphalt, which has a certain blindness This study evaluated the characteristics of different types of bauxite clinker. The adhesion of different types of bauxite clinker with asphalt was evaluated by means of agitating hydrostatic adsorption method and surface free energy theory. The effect of characteristic parameters of bauxite clinker on adhesion was evaluated by grey correlation entropy analysis. The results show that Type B and D bauxite clinker aggregates have the best adhesion to asphalt. The outcome of grey entropy correlation analysis shows that the parameters which characterize the structural indexes of bauxite clinker, such as porosity, water absorption and apparent density, have the greatest effect on the adhesion. The results of study can provide some reference for the selection of bauxite clinker, which is used in different types of highway construction, and a theoretical reference for the applicability research of bauxite clinker in asphalt mixture and the improvement of skid resistance and durability of pavement. Full article
(This article belongs to the Special Issue Asphalt Materials)
Show Figures

Figure 1

Back to TopTop