Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = hierarchical longitudinal and transverse nanogratings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1819 KiB  
Article
Hierarchical Multi-Scale Coupled Periodical Photonic and Plasmonic Nanopatterns Inscribed by Femtosecond Laser Pulses in Lithium Niobate
by Sergey Kudryashov, Alexey Rupasov, Mikhail Kosobokov, Andrey Akhmatkhanov, George Krasin, Pavel Danilov, Boris Lisjikh, Alexander Abramov, Evgeny Greshnyakov, Evgeny Kuzmin, Michael Kovalev and Vladimir Shur
Nanomaterials 2022, 12(23), 4303; https://doi.org/10.3390/nano12234303 - 4 Dec 2022
Cited by 16 | Viewed by 2291
Abstract
The ultrafast interaction of tightly focused femtosecond laser pulses with bulk dielectric media in direct laser writing (inscription) regimes is known to proceed via complex multi-scale light, plasma and material modification nanopatterns, which are challenging for exploration owing to their mesoscopic, transient and [...] Read more.
The ultrafast interaction of tightly focused femtosecond laser pulses with bulk dielectric media in direct laser writing (inscription) regimes is known to proceed via complex multi-scale light, plasma and material modification nanopatterns, which are challenging for exploration owing to their mesoscopic, transient and buried character. In this study, we report on the first experimental demonstration, analysis and modeling of hierarchical multi-period coupled longitudinal and transverse nanogratings in bulk lithium niobate inscribed in the focal region by 1030 nm, 300 fs laser pulses in the recently proposed sub-filamentary laser inscription regime. The longitudinal Bragg-like topography nanogratings, possessing the laser-intensity-dependent periods ≈ 400 nm, consist of transverse birefringent nanogratings, which are perpendicular to the laser polarization and exhibit much smaller periods ≈ 160 nm. Our analysis and modeling support the photonic origin of the longitudinal nanogratings, appearing as prompt electromagnetic and corresponding ionization standing waves in the pre-focal region due to interference of the incident and plasma-reflected laser pulse parts. The transverse nanogratings could be assigned to the nanoscale material modification by interfacial plasmons, excited and interfered in the resulting longitudinal array of the plasma sheets in the bulk dielectric material. Our experimental findings provide strong support for our previously proposed mechanism of such hierarchical laser nanopatterning in bulk dielectrics, giving important insights into its crucial parameters and opening the way for directional harnessing of this technology. Full article
(This article belongs to the Special Issue Nanophotonics Enabled by Femtosecond Lasers)
Show Figures

Figure 1

Back to TopTop