Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = heterogeneous nanozyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2975 KiB  
Article
The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment
by Xinru Cai, Tongtong Xie, Linshan Luo and Xiting Li
Nanomaterials 2024, 14(16), 1369; https://doi.org/10.3390/nano14161369 - 21 Aug 2024
Cited by 1 | Viewed by 1285
Abstract
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic [...] Read more.
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both Escherichia coli and Staphylococcus aureus. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination. Full article
(This article belongs to the Special Issue Nanocatalysts for Environmental Remediation)
Show Figures

Figure 1

17 pages, 4938 KiB  
Article
Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles
by Célia Boukoufi, Ariane Boudier and Igor Clarot
Molecules 2023, 28(22), 7558; https://doi.org/10.3390/molecules28227558 - 13 Nov 2023
Cited by 1 | Viewed by 1695
Abstract
Gold nanoparticles (AuNPs) can be described as nanozymes, species that are able to mimic the catalytic activities of several enzymes, such as oxidase/peroxidase, reductase, or catalase. Most studies in the literature focus on the colloidal suspension of AuNPs, and it is obvious that [...] Read more.
Gold nanoparticles (AuNPs) can be described as nanozymes, species that are able to mimic the catalytic activities of several enzymes, such as oxidase/peroxidase, reductase, or catalase. Most studies in the literature focus on the colloidal suspension of AuNPs, and it is obvious that their immobilization could open the doors to new applications thanks to their increased stability in this state. This work aimed to investigate the behavior of surfaces covered by immobilized AuNPs (iAuNPs). Citrate-stabilized AuNPs (AuNPs-cit) were synthesized and immobilized on glass slides using a simple dip coating method. The resulting iAuNPs were characterized (surface plasmon resonance, microscopy, quantification of immobilized AuNPs), and their multi-enzymatic-like activities (oxidase-, peroxidase-, and catalase-like activity) were evaluated. The comparison of their activities versus AuNPs-cit highlighted their added value, especially the preservation of their activity in some reaction media, and their ease of reuse. The huge potential of iAuNPs for heterogeneous catalysis was then applied to the degradation of two model molecules of hospital pollutants: metronidazole and methylene blue. Full article
Show Figures

Graphical abstract

12 pages, 4310 KiB  
Article
A Colorimetric Sensor Enabled with Heterogeneous Nanozymes with Phosphatase-like Activity for the Residue Analysis of Methyl Parathion
by Fengnian Zhao, Mengyue Li, Li Wang and Min Wang
Foods 2023, 12(15), 2980; https://doi.org/10.3390/foods12152980 - 7 Aug 2023
Cited by 19 | Viewed by 2353
Abstract
In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting [...] Read more.
In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting in synergistic hydrolysis performance for OPs. Taking methyl parathion (MP) as the target pesticide, the catalytic performance and mechanism of Au-pCeO2 were investigated. Based on the phosphatase-like Au-pCeO2, a dual-mode colorimetric sensor for MP was put forward by the analysis of the hydrolysis product via a UV-visible spectrophotometer and a smartphone. Under optimum conditions, this dual-mode strategy can be used for the on-site analysis of MP with concentrations of 5 to 200 μM. Additionally, it can be applied for MP detection in pear and lettuce samples with recoveries ranging from 85.27% to 115.87% and relative standard deviations (RSDs) not exceeding 6.20%, which can provide a simple and convenient method for OP detection in agricultural products. Full article
(This article belongs to the Special Issue Food Contaminant Detection, Analysis and Risk Assessment)
Show Figures

Graphical abstract

Back to TopTop