Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = heterodyne coherent angle measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4268 KiB  
Article
A μrad Accuracy and nW Detection Sensitivity Four-Quadrant Heterodyne Coherent Angular Measurement System
by Ziqi Zhang, Shoufeng Tong, Peng Lin, Dixiang Zeng and Xiaonan Yu
Photonics 2025, 12(5), 509; https://doi.org/10.3390/photonics12050509 - 19 May 2025
Viewed by 361
Abstract
In gravitational wave measurement and inter-satellite laser communication systems, the relative rotation and motion between the transmitter and receiver terminals introduces small angular deviations over a link distance of thousands of kilometers, which need to be measured with high accuracy and sensitivity. The [...] Read more.
In gravitational wave measurement and inter-satellite laser communication systems, the relative rotation and motion between the transmitter and receiver terminals introduces small angular deviations over a link distance of thousands of kilometers, which need to be measured with high accuracy and sensitivity. The heterodyne coherent angle measurement has a higher measurement accuracy and detection sensitivity compared with the traditional direct detection technique, which performs angle measurement through the phase of a beat frequency signal. In this paper, we propose a four-quadrant heterodyne coherent angle measurement technique with μrad accuracy and nW-level detection sensitivity. A mathematical model of a differential wavefront sensing (DWS) angle solution was formulated, and a Monte Carlo simulation system was built for performance testing. An experimental system was devised to assess the accuracy and sensitivity of the heterodyne coherent measurement method and to compare the performance with that of the direct detection method. The experimental results showed that for azimuth and pitch axes, the accuracy of the heterodyne coherent angle measurement was 2.54 μrad and 2.85 μrad under the same signal power of −16 dBm, which had a 5-fold improvement compared with direct detection. The sensitivity of the heterodyne coherent detection was −50 dBm at the 20 μrad accuracy threshold, which was a 1000-fold improvement compared with direct detection. This research is of great significance for the phase measurement and tracking system in the field of gravitational wave detection and has a guiding role in system design work in the field of inter-satellite laser communication. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

Back to TopTop