Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = heterocyst glycolipids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2609 KiB  
Article
Changes in Envelope Structure and Cell–Cell Communication during Akinete Differentiation and Germination in Filamentous Cyanobacterium Trichormus variabilis ATCC 29413
by Ritu Garg, Manja Luckner, Jürgen Berger, Katharina Hipp, Gerhard Wanner, Karl Forchhammer and Iris Maldener
Life 2022, 12(3), 429; https://doi.org/10.3390/life12030429 - 16 Mar 2022
Cited by 4 | Viewed by 3955
Abstract
Planktonic freshwater filamentous cyanobacterium Trichormus variabilis ATCC 29413 (previously known as Anabaena variabilis) can differentiate heterocysts and akinetes to survive under different stress conditions. Whilst heterocysts enable diazotrophic growth, akinetes are spore-like resting cells that make the survival of the species possible [...] Read more.
Planktonic freshwater filamentous cyanobacterium Trichormus variabilis ATCC 29413 (previously known as Anabaena variabilis) can differentiate heterocysts and akinetes to survive under different stress conditions. Whilst heterocysts enable diazotrophic growth, akinetes are spore-like resting cells that make the survival of the species possible under adverse growth conditions. Under suitable environmental conditions, they germinate to produce new vegetative filaments. Several morphological and physiological changes occur during akinete formation and germination. Here, using scanning electron microscopy (SEM), we found that the mature akinetes had a wrinkled envelope, and the surface of the envelope smoothened as the cell size increased during germination. Thereupon, the akinete envelope ruptured to release the short emerging filament. Focused ion beam–scanning electron microscopy (FIB/SEM) tomography of immature akinetes revealed the presence of cytoplasmic granules, presumably consisting of cyanophycin or glycogen. In addition, the akinete envelope architecture of different layers, the exopolysaccharide and glycolipid layers, could be visualized. We found that this multilayered envelope helped to withstand osmotic stress and to maintain the structural integrity. Furthermore, by fluorescence recovery after photobleaching (FRAP) measurements, using the fluorescent tracer calcein, we found that intercellular communication decreased during akinete formation as compared with the vegetative cells. In contrast, freshly germinating filaments restored cell communication. Full article
Show Figures

Figure 1

17 pages, 7083 KiB  
Article
Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2
by Xiaohe Jin, Eric S. Miller and Jonathan S. Lindsey
Life 2021, 11(4), 356; https://doi.org/10.3390/life11040356 - 18 Apr 2021
Cited by 6 | Viewed by 3736
Abstract
Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of [...] Read more.
Cyanobacteria are known as rich repositories of natural products. One cyanobacterial-microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols. Full article
(This article belongs to the Special Issue Cyanobacteria: Advances in (Meta-)Genomics and Proteomics)
Show Figures

Figure 1

18 pages, 2695 KiB  
Article
The ABC Transporter Components HgdB and HgdC are Important for Glycolipid Layer Composition and Function of Heterocysts in Anabaena sp. PCC 7120
by Dmitry Shvarev, Carolina N. Nishi, Lars Wörmer and Iris Maldener
Life 2018, 8(3), 26; https://doi.org/10.3390/life8030026 - 2 Jul 2018
Cited by 17 | Viewed by 6755
Abstract
Anabaena sp. PCC 7120 is a filamentous cyanobacterium able to fix atmospheric nitrogen in semi-regularly spaced heterocysts. For correct heterocyst function, a special cell envelope consisting of a glycolipid layer and a polysaccharide layer is essential. We investigated the role of the genes [...] Read more.
Anabaena sp. PCC 7120 is a filamentous cyanobacterium able to fix atmospheric nitrogen in semi-regularly spaced heterocysts. For correct heterocyst function, a special cell envelope consisting of a glycolipid layer and a polysaccharide layer is essential. We investigated the role of the genes hgdB and hgdC, encoding domains of a putative ABC transporter, in heterocyst maturation. We investigated the subcellular localization of the fusion protein HgdC-GFP and followed the differential expression of the hgdB and hgdC genes during heterocyst maturation. Using a single recombination approach, we created a mutant in hgdB gene and studied its phenotype by microscopy and analytical chromatography. Although heterocysts are formed in the mutant, the structure of the glycolipid layer is aberrant and also contains an atypical ratio of the two major glycolipids. As shown by a pull-down assay, HgdB interacts with the outer membrane protein TolC, which indicates a function as a type 1 secretion system. We show that the hgdB-hgdC genes are essential for the creation of micro-oxic conditions by influencing the correct composition of the glycolipid layer for heterocyst function. Our observations confirm the significance of the hgdB-hgdC gene cluster and shed light on a novel mode of regulation of heterocyst envelope formation. Full article
(This article belongs to the Special Issue Developmental Biology in Cyanobacteria)
Show Figures

Figure 1

Back to TopTop