Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hetero-de-formation-induced hardening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5308 KiB  
Article
Achieving Superior Ductility at High Strain Rate in a 1.5 GPa Ultrahigh-Strength Steel without Obvious Transformation-Induced Plasticity Effect
by Yao Lu, Tianxing Ma, Zhiyuan Liang and Li Liu
Metals 2024, 14(9), 1042; https://doi.org/10.3390/met14091042 - 13 Sep 2024
Viewed by 1087
Abstract
The development of ultrahigh-strength steels with good ductility is crucial for improving the crashworthiness of automobiles. In the present work, the mechanical responses and deformation behaviors of 1.5 GPa ultrahigh-strength steel were systematically investigated over a wide range of strain rates, from 10 [...] Read more.
The development of ultrahigh-strength steels with good ductility is crucial for improving the crashworthiness of automobiles. In the present work, the mechanical responses and deformation behaviors of 1.5 GPa ultrahigh-strength steel were systematically investigated over a wide range of strain rates, from 10−3 s−1 to 103 s−1. The yield strength and tensile elongation at quasi-static strain rate (10−3 s−1) were 1548 MPa and 20%, respectively. The yield strength increased to 1930 MPa at an extremely high strain rate (103 s−1), and the steel maintained excellent ductility, with values as high as 17%. It was found that the prevailing of the transformation-induced plasticity (TRIP) effect at quasi-static condition resulted in the formation of fresh martensite. This produced strong hetero-deformation-induced (HDI) stress and strain partitioning, contributing to the enhancement of strain hardening. The TRIP effect is remarkably suppressed under high strain rates, and thus the retained austenite with excellent deformation ability sustains the subsequent deformation, leading to superior ductility when the TRIP effect and HDI strengthening are retarded. Ultrahigh-strength steel with great strength–ductility combination over a wide range of strain rates has great potential in improving component performance while reducing vehicle weight. Full article
(This article belongs to the Special Issue Physical Metallurgy of Steel)
Show Figures

Figure 1

13 pages, 28485 KiB  
Article
Revealing the Enhancement Mechanism of Laser Cutting on the Strength–Ductility Combination in Low Carbon Steel
by Jie Chen, Feiyue Tu, Pengfei Wang and Yu Cao
Metals 2024, 14(5), 541; https://doi.org/10.3390/met14050541 - 2 May 2024
Cited by 2 | Viewed by 1782
Abstract
The strength–ductility mechanism of the low-carbon steels processed by laser cutting is investigated in this paper. A typical gradient-phased structure can be obtained near the laser cutting surface, which consists of a laser-remelted layer (LRL, with the microstructure of lath bainite + granular [...] Read more.
The strength–ductility mechanism of the low-carbon steels processed by laser cutting is investigated in this paper. A typical gradient-phased structure can be obtained near the laser cutting surface, which consists of a laser-remelted layer (LRL, with the microstructure of lath bainite + granular bainite) and heat-affected zone (HAZ). As the distance from the laser cutting surface increases, the content of lath martensite decreases in the HAZ, which is accompanied by a rise in the content of ferrite. Considering that the microstructures of the LRL and HAZ are completely different from the base metal (BM, ferrite + pearlite), a significant strain gradient can be inevitably generated by the remarkable microhardness differences in the gradient-phased structure. The hetero-deformation-induced strengthening and hardening will be produced, which is related to the pileups of the geometrically necessary dislocations (GNDs) that are generated to accommodate the strain gradient near interfaces. Plural phases of the HAZ can also contribute to the increment of the hetero-deformation-induced strengthening and hardening during deformation. Due to the gradient-phased structure, the low carbon steels under the process of laser cutting have a superior combination of strength and ductility as yield strength of ~487 MPa, tensile strength of ~655 MPa, and total elongation of ~32.7%. Full article
Show Figures

Figure 1

13 pages, 21069 KiB  
Article
Strength–Ductility Mechanism of CoCrFeMnNi High-Entropy Alloys with Inverse Gradient-Grained Structures
by Jie Chen, Yongqiang Hu, Pengfei Wang, Jingge Li, Yu Zheng, Chengtong Lu, Bohong Zhang, Jiahai Shen and Yu Cao
Materials 2024, 17(7), 1695; https://doi.org/10.3390/ma17071695 - 7 Apr 2024
Cited by 1 | Viewed by 1469
Abstract
The microstructures and mechanical properties of equiatomic CoCrFeMnNi high-entropy alloys (HEAs) treated with various processing parameters of laser surface heat treatment are studied in this paper. The typical inverse gradient-grained structure, which is composed of a hard central layer and a soft surface [...] Read more.
The microstructures and mechanical properties of equiatomic CoCrFeMnNi high-entropy alloys (HEAs) treated with various processing parameters of laser surface heat treatment are studied in this paper. The typical inverse gradient-grained structure, which is composed of a hard central layer and a soft surface layer, can be obtained by laser surface heat treatment. A much narrower gradient layer leads to the highest yield strength by sacrificing ductility when the surface temperature of the laser-irradiated region remains at ~850 °C, whereas the fully recrystallized microstructure, which exists from the top surface layer to the ~1.05 mm depth layer, increases the ductility but decreases the yield strength as the maximum heating temperature rises to ~1050 °C. Significantly, the superior strength–ductility combination can be acquired by controlling the surface temperature of a laser-irradiated surface at ~1000 °C with a scanning speed of ~4 mm/s due to the effect of hetero-deformation-induced strengthening and hardening, as well as the enhanced interaction between dislocation and nanotwins by the hierarchical nanotwins. Therefore, retaining the partial recrystallized microstructure with a relatively high microhardness in the central layer, promoting the generation of hierarchical nanotwins, and increasing the volume proportion of gradient layer can effectively facilitate the inverse gradient-grained CoCrFeMnNi HEAs to exhibit a desirable strength–ductility synergy. Full article
Show Figures

Graphical abstract

17 pages, 9081 KiB  
Article
Heterogeneous Microstructure Provides a Good Combination of Strength and Ductility in Duplex Stainless Steel
by Jingran Yang, Xingfu Li, Cong Li, Zhuangdi Zhou, Shuwei Quan, Zhuang Kang, Shen Qin, Lele Sun, Bo Gao and Xinkun Zhu
Metals 2024, 14(2), 193; https://doi.org/10.3390/met14020193 - 3 Feb 2024
Cited by 2 | Viewed by 1678
Abstract
SAF2507 duplex stainless steel (DSS) is often used as a structural component in ocean-going vessels and marine petroleum exploitation equipment, which require superior mechanical properties. In this study, we used cold rolling (CR) at room temperature with 55% or 80% deformation amounts and [...] Read more.
SAF2507 duplex stainless steel (DSS) is often used as a structural component in ocean-going vessels and marine petroleum exploitation equipment, which require superior mechanical properties. In this study, we used cold rolling (CR) at room temperature with 55% or 80% deformation amounts and subsequent annealing at 1273 K in 1 min to prepare SAF2507 samples with a heterogeneous structure (HS) that was composed of ferrite and austenite phases with different grain sizes. Compared with the homogeneous structure samples, the yield strength of the HS samples increased, while the ductility did not decrease. The 55%-1273 and 80%-1273 samples exhibited the hetero-zone boundary-affected regions on both sides of the grain boundary, phase boundary, and twin boundary. This resulted in hetero-deformation-induced (HDI) strengthening and strain hardening of samples during tensile deformation, which improved the ultimate tensile strength of the HS samples while maintaining a good uniform elongation. In addition, the heterogeneous structure of DSS had better corrosion resistance than the initial sample of coarse grain (CG) structure; mainly because the HS samples had finer grains and more grain boundaries on the DSS surface than the CG structure, which is conducive to the formation of high-density passivation film on the surface of stainless steel. The current study provides a new method of material selection of some structural components with the demands of high strength and good ductility. Full article
Show Figures

Figure 1

9 pages, 3546 KiB  
Communication
Hierarchical Multiple Precursors Induced Heterogeneous Structures in Super Austenitic Stainless Steels by Cryogenic Rolling and Annealing
by Duo Tan, Bin Fu, Wei Guan, Yu Li, Yanhui Guo, Liqun Wei and Yi Ding
Materials 2023, 16(18), 6298; https://doi.org/10.3390/ma16186298 - 20 Sep 2023
Cited by 4 | Viewed by 1239
Abstract
Multiple deformed substructures including dislocation cells, nanotwins (NTs) and martensite were introduced in super austenitic stainless steels (SASSs) by cryogenic rolling (Cryo-R, 77 K/22.1 mJ·m−2). With the reduction increasing, a low stacking fault energy (SFE) and increased flow stress led to [...] Read more.
Multiple deformed substructures including dislocation cells, nanotwins (NTs) and martensite were introduced in super austenitic stainless steels (SASSs) by cryogenic rolling (Cryo-R, 77 K/22.1 mJ·m−2). With the reduction increasing, a low stacking fault energy (SFE) and increased flow stress led to the activation of secondary slip and the occurrence of NTs and martensite nano-laths, while only dislocation tangles were observed under a heavy reduction by cold-rolling (Cold-R, 293 K/49.2 mJ·m−2). The multiple precursors not only possess variable deformation stored energy, but also experience competition between recrystallization and reverse transformation during subsequent annealing, thus contributing to the formation of a heterogeneous structure (HS). The HS, which consists of bimodal-grained austenite and retained martensite simultaneously, showed a higher yield strength (~1032 MPa) and a larger tensile elongation (~9.1%) than the annealed coarse-grained Cold-R sample. The superior strength–ductility and strain hardening originate from the synergistic effects of grain refinement, dislocation and hetero-deformation-induced hardening. Full article
Show Figures

Figure 1

11 pages, 4087 KiB  
Article
A 4340 Steel with Superior Strength and Toughness Achieved by Heterostructure via Intercritical Quenching and Tempering
by Yi Sang, Guosheng Sun and Jizi Liu
Metals 2023, 13(6), 1139; https://doi.org/10.3390/met13061139 - 19 Jun 2023
Cited by 8 | Viewed by 4353
Abstract
The conventional 4340 steel was used after quenching and tempering, strengthened by the classical pearlitic structure where cementite particles are dispersed through the ferrite matrix. In the present study, a heterostructure microstructure consisting of micro-sized residual ferrite zones and pearlitic zones was introduced [...] Read more.
The conventional 4340 steel was used after quenching and tempering, strengthened by the classical pearlitic structure where cementite particles are dispersed through the ferrite matrix. In the present study, a heterostructure microstructure consisting of micro-sized residual ferrite zones and pearlitic zones was introduced by an optimized process of intercritical quenching and tempering, resulting in a steel with higher strength and better toughness. The pearlite steel has a tensile strength of 1233 MPa, yield strength of 1156 MPa, and toughness of 121.5 MJ/m3. Compared with the pearlite steel, the tensile strength and yield strength of the heterostructure steel have been improved by 67 MPa and 74 MPa, respectively, while the toughness has been increased by 52.5 MJ/m3. In this heterostructure, the micro-sized ferrite bulks serve as the soft zones surrounded by the hard zones of the pearlite structure to achieve a remarkable work-hardening capacity. Statistical analysis shows that the heterostructure has the best hetero-deformation-induced (HDI) hardening capability when the residual ferrite bulk contributes ~31% by volume fraction, and the quenching temperature is around 780 °C. This study opens new ways of thinking about the strengthening and toughening mechanism of heat treatment of medium carbon steels. Full article
(This article belongs to the Special Issue Thermomechanical Treatment of Metals and Alloys)
Show Figures

Figure 1

12 pages, 2317 KiB  
Article
Hetero-Deformation Induced Hardening in a CoCrFeNiMn High-Entropy Alloy
by Hamed Shahmir, Parham Saeedpour, Mohammad Sajad Mehranpour, Seyed Amir Arsalan Shams and Chong Soo Lee
Crystals 2023, 13(5), 844; https://doi.org/10.3390/cryst13050844 - 19 May 2023
Cited by 12 | Viewed by 2888
Abstract
One of the most important issues in materials science is to overcome the strength–ductility trade-off in engineering alloys. The formation of heterogeneous and complex microstructures is a useful approach to achieving this purpose. In this investigation, a CoCrFeNiMn high-entropy alloy was processed via [...] Read more.
One of the most important issues in materials science is to overcome the strength–ductility trade-off in engineering alloys. The formation of heterogeneous and complex microstructures is a useful approach to achieving this purpose. In this investigation, a CoCrFeNiMn high-entropy alloy was processed via cold rolling followed by post-deformation annealing over a temperature range of 650–750 °C, which led to a wide range of grain sizes. Annealing at 650 °C led to the formation of a heterogeneous structure containing recrystallized areas with ultrafine and fine grains and non-recrystallized areas with an average size of ~75 μm. The processed material showed strength–ductility synergy with very high strengths of over ~1 GPa and uniform elongations of over 12%. Different deformation mechanisms such as dislocation slip, deformation twinning and hetero-deformation-induced hardening were responsible for achieving this mechanical property. Increasing the annealing temperature up to 700 °C facilitated the acquisition of bimodal grain size distributions of ~1.5 and ~6 μm, and the heterogeneous structure was eliminated via annealing at higher temperatures, which led to a significant decrease in strength. Full article
(This article belongs to the Special Issue Crystal Plasticity (Volume III))
Show Figures

Figure 1

12 pages, 57206 KiB  
Article
Simultaneous Improvement of Yield Strength and Ductility at Cryogenic Temperature by Gradient Structure in 304 Stainless Steel
by Shuang Qin, Muxin Yang, Fuping Yuan and Xiaolei Wu
Nanomaterials 2021, 11(7), 1856; https://doi.org/10.3390/nano11071856 - 19 Jul 2021
Cited by 15 | Viewed by 4014
Abstract
The tensile properties and the corresponding deformation mechanism of the graded 304 stainless steel (ss) at both room and cryogenic temperatures were investigated and compared with those of the coarse-grained (CGed) 304 ss. Gradient structures were found to have excellent synergy of strength [...] Read more.
The tensile properties and the corresponding deformation mechanism of the graded 304 stainless steel (ss) at both room and cryogenic temperatures were investigated and compared with those of the coarse-grained (CGed) 304 ss. Gradient structures were found to have excellent synergy of strength and ductility at room temperature, and both the yield strength and the uniform elongation were found to be simultaneously improved at cryogenic temperature in the gradient structures, as compared to those for the CG sample. The hetero-deformation-induced (HDI) hardening was found to play a more important role in the gradient structures as compared to the CG sample and be more obvious at cryogenic temperature as compared to that at room temperature. The central layer in the gradient structures provides stronger strain hardening during tensile deformation at both temperatures, due to more volume fraction of martensitic transformation. The volume fraction of martensitic transformation in the gradient structures was found to be much higher at cryogenic temperature, resulting in a much stronger strain hardening at cryogenic temperature. The amount of martensitic transformation at the central layer of the gradient structures is observed to be even higher than that for the CG sample at cryogenic temperature, which is one of the origins for the simultaneous improvement of strength and ductility by the gradient structures at cryogenic temperature. Full article
(This article belongs to the Special Issue Gradient Nanograined Materials)
Show Figures

Graphical abstract

Back to TopTop