Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = health and usage monitoring system (HUMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5359 KiB  
Article
Relationship Analysis Between Helicopter Gearbox Bearing Condition Indicators and Oil Temperature Through Dynamic ARDL and Wavelet Coherence Techniques
by Lotfi Saidi, Eric Bechhofer and Mohamed Benbouzid
Machines 2025, 13(8), 645; https://doi.org/10.3390/machines13080645 - 24 Jul 2025
Viewed by 296
Abstract
This study investigates the dynamic relationship between bearing gearbox condition indicators (BGCIs) and the lubrication oil temperature within the framework of health and usage monitoring system (HUMS) applications. Using the dynamic autoregressive distributed lag (DARDL) simulation model, we quantified both the short- and [...] Read more.
This study investigates the dynamic relationship between bearing gearbox condition indicators (BGCIs) and the lubrication oil temperature within the framework of health and usage monitoring system (HUMS) applications. Using the dynamic autoregressive distributed lag (DARDL) simulation model, we quantified both the short- and long-term responses of condition indicators to shocks in oil temperature, offering a robust framework for a counterfactual analysis. To complement the time-domain perspective, we applied a wavelet coherence analysis (WCA) to explore time–frequency co-movements and phase relationships between the condition indicators under varying operational regimes. The DARDL results revealed that the ball energy, cage energy, and inner and outer race indicators significantly increased in response to the oil temperature in the long run. The WCA results further confirmed the positive association between oil temperature and the condition indicators under examination, aligning with the DARDL estimations. The DARDL model revealed that the ball energy and the inner race energy have statistically significant long-term effects on the oil temperature, with p-values < 0.01. The adjusted R2 of 0.785 and the root mean square error (MSE) of 0.008 confirm the model’s robustness. The wavelet coherence analysis showed strong time–frequency correlations, especially in the 8–16 scale range, while the frequency-domain causality (FDC) tests confirmed a bidirectional influence between the oil temperature and several condition indicators. The FDC analysis showed that the oil temperature significantly affected the BGCIs, with evidence of feedback effects, suggesting a mutual dependency. These findings contribute to the advancement of predictive maintenance frameworks in HUMSs by providing practical insights for enhancing system reliability and optimizing maintenance schedules. The integration of dynamic econometric approaches demonstrates a robust methodology for monitoring critical mechanical components and encourages further research in broader aerospace and industrial contexts. Full article
Show Figures

Figure 1

28 pages, 2631 KiB  
Article
Preliminary Nose Landing Gear Digital Twin for Damage Detection
by Lucio Pinello, Omar Hassan, Marco Giglio and Claudio Sbarufatti
Aerospace 2024, 11(3), 222; https://doi.org/10.3390/aerospace11030222 - 12 Mar 2024
Cited by 4 | Viewed by 2331
Abstract
An increase in aircraft availability and readiness is one of the most desired characteristics of aircraft fleets. Unforeseen failures cause additional expenses and are particularly critical when thinking about combat jets and Unmanned Aerial Vehicles (UAVs). For instance, these systems are used under [...] Read more.
An increase in aircraft availability and readiness is one of the most desired characteristics of aircraft fleets. Unforeseen failures cause additional expenses and are particularly critical when thinking about combat jets and Unmanned Aerial Vehicles (UAVs). For instance, these systems are used under extreme conditions, and there can be situations where standard maintenance procedures are impractical or unfeasible. Thus, it is important to develop a Health and Usage Monitoring System (HUMS) that relies on diagnostic and prognostic algorithms to minimise maintenance downtime, improve safety and availability, and reduce maintenance costs. In particular, within the realm of aircraft structures, landing gear emerges as one of the most intricate systems, comprising several elements, such as actuators, shock absorbers, and structural components. Therefore, this work aims to develop a preliminary digital twin of a nose landing gear and implement diagnostic algorithms within the framework of the Health and Usage Monitoring System (HUMS). In this context, a digital twin can be used to build a database of signals acquired under healthy and faulty conditions on which damage detection algorithms can be implemented and tested. In particular, two algorithms have been implemented: the first is based on the Root-Mean-Square Error (RMSE), while the second relies on the Mahalanobis distance (MD). The algorithms were tested for three nose landing gear subsystems, namely, the steering system, the retraction/extraction system, and the oleo-pneumatic shock absorber. A comparison is made between the two algorithms using the ROC curve and accuracy, assuming equal weight for missed detections and false alarms. The algorithm that uses the Mahalanobis distance demonstrated superior performance, with a lower false alarm rate and higher accuracy compared to the other algorithm. Full article
(This article belongs to the Special Issue Aircraft Structural Health Monitoring and Digital Twin)
Show Figures

Figure 1

17 pages, 5688 KiB  
Article
Usage Monitoring of Helicopter Gearboxes with ADS-B Flight Data
by David Hünemohr, Jörg Litzba and Farid Rahimi
Aerospace 2022, 9(11), 647; https://doi.org/10.3390/aerospace9110647 - 25 Oct 2022
Cited by 5 | Viewed by 4278
Abstract
Health and usage monitoring systems (HUMS) are the basis for condition-based maintenance of helicopters. One of the most critical systems in terms of safety and maintenance expense that can be monitored by HUMS are the main gearboxes of helicopters with turbine engines. While [...] Read more.
Health and usage monitoring systems (HUMS) are the basis for condition-based maintenance of helicopters. One of the most critical systems in terms of safety and maintenance expense that can be monitored by HUMS are the main gearboxes of helicopters with turbine engines. While the health monitoring part of HUMS aims to model the health state from the collected sensor data with advanced algorithms, such as machine learning, the usage monitoring part tracks the time of use and operating parameters of the system, such as load, to determine lifetime consumption. In the presented work, a combination of automatic dependent surveillance-broadcast (ADS-B) flight data with a generic helicopter performance model is used to acquire torque profiles of the gearboxes. With damage accumulation methods, the load spectra are transformed to aggregated indicators that reflect the individual gearbox usage. The methodology is applied to samples of two helicopters from a five-year ADS-B data set of German helicopter emergency medical services (HEMS) acquired for the study. The results demonstrate the feasibility of the generic approach, which can support maintenance scheduling and new usage-based maintenance services independent of direct access to installed HUMS. Full article
Show Figures

Figure 1

20 pages, 5743 KiB  
Article
Vehicular Sensor Network and Data Analytics for a Health and Usage Management System
by Kavindu Ranasinghe, Rohan Kapoor, Alessandro Gardi, Roberto Sabatini, Vishwanath Wickramanayake and David Ludovici
Sensors 2020, 20(20), 5892; https://doi.org/10.3390/s20205892 - 17 Oct 2020
Cited by 6 | Viewed by 4712
Abstract
Automated collection of on-vehicle sensor data allows the development of artificial intelligence (AI) techniques for vehicular systems’ diagnostic and prognostic processes to better assess the state-of-health, predict faults and evaluate residual life of ground vehicle systems. One of the vital subsystems, in terms [...] Read more.
Automated collection of on-vehicle sensor data allows the development of artificial intelligence (AI) techniques for vehicular systems’ diagnostic and prognostic processes to better assess the state-of-health, predict faults and evaluate residual life of ground vehicle systems. One of the vital subsystems, in terms of safety and mission criticality, is the power train, (comprising the engine, transmission, and final drives), which provides the driving torque required for vehicle acceleration. In this paper, a novel health and usage monitoring system (HUMS) architecture is presented, together with dedicated diagnosis/prognosis algorithms that utilize data gathered from a sensor network embedded in an armoured personnel carrier (APC) vehicle. To model the drivetrain, a virtual dynamometer is introduced, which estimates the engine torque output for successive comparison with the measured torque values taken from the engine control unit. This virtual dynamometer is also used in conjunction with other sensed variables to determine the maximum torque output of the engine, which is considered to be the primary indicator of engine health. Regression analysis is performed to capture the effect of certain variables such as engine hours, oil temperature, and coolant temperature on the degradation of maximum engine torque. Degradations in the final drives system were identified using a comparison of the temperature trends between the left-hand and right-hand final drives. This research lays foundations for the development of real-time diagnosis and prognosis functions for an integrated vehicle health management (IVHM) system suitable for safety critical manned and unmanned vehicle applications. Full article
Show Figures

Figure 1

Back to TopTop