Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hard fruit syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2649 KiB  
Article
Marker–Trait Association for Protein Content among Maize Wild Accessions and Coix Using SSR Markers
by Shankarappa Varalakshmi, Smrutishree Sahoo, Narendra Kumar Singh, Navneet Pareek, Priya Garkoti, Velmurugan Senthilkumar, Shruti Kashyap, Jai Prakash Jaiswal, Sherry Rachel Jacob and Amol N. Nankar
Agronomy 2023, 13(8), 2138; https://doi.org/10.3390/agronomy13082138 - 15 Aug 2023
Cited by 6 | Viewed by 2327
Abstract
Teosinte is the closest wild ancestor of maize and is used as a valuable resource for taxonomical, evolutionary and genetic architectural studies of maize. Teosinte is also a repository of numerous diverse alleles for complex traits, including nutritional value and stress adaptation. Accessions [...] Read more.
Teosinte is the closest wild ancestor of maize and is used as a valuable resource for taxonomical, evolutionary and genetic architectural studies of maize. Teosinte is also a repository of numerous diverse alleles for complex traits, including nutritional value and stress adaptation. Accessions including teosintes, maize inbred lines and coix were investigated for kernel protein and its association with DNA markers. The proposed investigation assumed that wild accessions had different genic/allelic content and consequently expression profile than modern maize because of the domestication syndrome and bottleneck effects. Total protein content in hard stony fruit case teosinte accessions were assessed from kernels with and without seed coats, while protein content from coix and maize lines was evaluated from kernels only. The accessions were also subjected to molecular profiling using 84 SSR markers, and obtained genotypic data were used for population structure and association analysis. The results emphasize that teosintes have higher protein content (18.5% to 26.29%), followed by coix (18.26%), and the least among maize lines (9% to 11%). Among teosintes, without-seed-coat samples had 3–6% higher protein content than with-seed-coat samples. When compared to other teosinte species, Z. mays subsp. mexicana accessions showed higher protein content, ranging from 18.62% to 26.29%. All evaluated accessions were divided into four subpopulations with K = 4, and seven significant (p < 0.01) marker–trait associations were seen with umc1294, umc1171, phi091, umc2182 and bnlg292 markers, which are distributed across chromosomes 4, 5, 7, 8 and 9, respectively. We have observed that the wild relatives carry protein content-enhancing alleles and can be used as productive donor parents in pre-breeding efforts to increase the protein content of maize. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

13 pages, 1759 KiB  
Article
Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the “Hard Fruit Syndrome” of Watermelon
by Takoua Zaagueri, Laura Miozzi, Monia Mnari-Hattab, Emanuela Noris, Gian Paolo Accotto and Anna Maria Vaira
Viruses 2017, 9(11), 311; https://doi.org/10.3390/v9110311 - 25 Oct 2017
Cited by 16 | Viewed by 6837
Abstract
Chickpea chlorotic dwarf virus (CpCDV), a polyphagous mastrevirus, family Geminiviridae, has been recently linked to the onset of the “hard fruit syndrome” of watermelon, first described in Tunisia, that makes fruits unmarketable due to the presence of white hard portions in the [...] Read more.
Chickpea chlorotic dwarf virus (CpCDV), a polyphagous mastrevirus, family Geminiviridae, has been recently linked to the onset of the “hard fruit syndrome” of watermelon, first described in Tunisia, that makes fruits unmarketable due to the presence of white hard portions in the flesh, chlorotic mottling on the rind, and an unpleasant taste. To investigate the etiological agent of this disease, total RNA extracted from symptomatic watermelon fruits was subjected to small RNA sequencing through next generation sequencing (NGS) techniques. Data obtained showed the presence of CpCDV and two other viral species. However, following validation through polymerase chain reaction (PCR), CpCDV was the only viral species consistently detected in all samples. Watermelon seedlings were then challenged by an agroinfectious CpCDV clone; several plants proved to be CpCDV-infected, and were able to produce fruits. CpCDV infected and replicated in watermelon fruits and leaves, leading to abnormality in fruits and in seed production, similar to those described in field. These results indicate that CpCDV is the etiological agent of the “hard fruit syndrome” of watermelon. Full article
(This article belongs to the Special Issue Geminiviruses)
Show Figures

Graphical abstract

Back to TopTop