Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = handheld nuclear magnetic resonance (NMR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12452 KiB  
Article
Scaling Nuclear Magnetic Resonance with Integrated Planar Coil and Transceiver Front-End: Co-Design Considerations
by Natachai Terawatsakul, Alireza Saberkari, Yuttapoom Puttisong and Morgan Madec
Electronics 2025, 14(2), 398; https://doi.org/10.3390/electronics14020398 - 20 Jan 2025
Viewed by 1291
Abstract
A comprehensive framework for designing a micro-nuclear magnetic resonance (NMR) front-end is presented. Key radio frequency (RF) engineering principles are established to enable efficient excitation and detection of NMR signals. This foundation aims to guide the optimal design of novel handheld NMR devices [...] Read more.
A comprehensive framework for designing a micro-nuclear magnetic resonance (NMR) front-end is presented. Key radio frequency (RF) engineering principles are established to enable efficient excitation and detection of NMR signals. This foundation aims to guide the optimal design of novel handheld NMR devices operating with magnetic fields (B0) below 0.5 Tesla and RF frequencies under 30 MHz. To address the complexities of signal-to-noise ratio optimization in this regime, a specialized metric called the coil performance factor (CPF) is introduced, emphasizing the role of coil design. Through systematic optimization under realistic constraints, an optimal coil configuration maximizing the CPF is identified. This design, with three turns, a coil width of 0.22 mm, and a coil spacing of 0.15 mm, achieves an optimal balance between magnetic field strength, homogeneity, and noise. This work serves as a valuable resource for engineers developing optimized coil designs and RF solutions for handheld NMR devices, providing clear explanations of essential concepts and a practical design methodology. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
Show Figures

Figure 1

42 pages, 8546 KiB  
Review
Agricultural Potentials of Molecular Spectroscopy and Advances for Food Authentication: An Overview
by John-Lewis Zinia Zaukuu, Eszter Benes, György Bázár, Zoltán Kovács and Marietta Fodor
Processes 2022, 10(2), 214; https://doi.org/10.3390/pr10020214 - 24 Jan 2022
Cited by 33 | Viewed by 6186
Abstract
Meat, fish, coffee, tea, mushroom, and spices are foods that have been acknowledged for their nutritional benefits but are also reportedly targets of fraud and tampering due to their economic value. Conventional methods often take precedence for monitoring these foods, but rapid advanced [...] Read more.
Meat, fish, coffee, tea, mushroom, and spices are foods that have been acknowledged for their nutritional benefits but are also reportedly targets of fraud and tampering due to their economic value. Conventional methods often take precedence for monitoring these foods, but rapid advanced instruments employing molecular spectroscopic techniques are gradually claiming dominance due to their numerous advantages such as low cost, little to no sample preparation, and, above all, their ability to fingerprint and detect a deviation from quality. This review aims to provide a detailed overview of common molecular spectroscopic techniques and their use for agricultural and food quality management. Using multiple databases including ScienceDirect, Scopus, Web of Science, and Google Scholar, 171 research publications including research articles, review papers, and book chapters were thoroughly reviewed and discussed to highlight new trends, accomplishments, challenges, and benefits of using molecular spectroscopic methods for studying food matrices. It was observed that Near infrared spectroscopy (NIRS), Infrared spectroscopy (IR), Hyperspectral imaging (his), and Nuclear magnetic resonance spectroscopy (NMR) stand out in particular for the identification of geographical origin, compositional analysis, authentication, and the detection of adulteration of meat, fish, coffee, tea, mushroom, and spices; however, the potential of UV/Vis, 1H-NMR, and Raman spectroscopy (RS) for similar purposes is not negligible. The methods rely heavily on preprocessing and chemometric methods, but their reliance on conventional reference data which can sometimes be unreliable, for quantitative analysis, is perhaps one of their dominant challenges. Nonetheless, the emergence of handheld versions of these techniques is an area that is continuously being explored for digitalized remote analysis. Full article
Show Figures

Figure 1

10 pages, 331 KiB  
Article
Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes
by Michael D. Pinter, Tod Harter, Michael J. McCarthy and Matthew P. Augustine
Sensors 2014, 14(3), 4167-4176; https://doi.org/10.3390/s140304167 - 3 Mar 2014
Cited by 24 | Viewed by 6652
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase [...] Read more.
Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. Full article
(This article belongs to the Special Issue Magnetic Resonance Sensors)
Show Figures

Back to TopTop