Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = half-size transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4522 KB  
Article
PGTFT: A Lightweight Graph-Attention Temporal Fusion Transformer for Predicting Pedestrian Congestion in Shadow Areas
by Jiyoon Lee and Youngok Kang
ISPRS Int. J. Geo-Inf. 2025, 14(10), 381; https://doi.org/10.3390/ijgi14100381 - 28 Sep 2025
Viewed by 533
Abstract
Forecasting pedestrian congestion in urban back streets is challenging due to “shadow areas” where CCTV coverage is absent and trajectory data cannot be directly collected. To address these gaps, we propose the Peak-aware Graph-attention Temporal Fusion Transformer (PGTFT), a lightweight hybrid model that [...] Read more.
Forecasting pedestrian congestion in urban back streets is challenging due to “shadow areas” where CCTV coverage is absent and trajectory data cannot be directly collected. To address these gaps, we propose the Peak-aware Graph-attention Temporal Fusion Transformer (PGTFT), a lightweight hybrid model that extends the Temporal Fusion Transformer by integrating a non-parametric attention-based Graph Convolutional Network, a peak-aware Gated Residual Network, and a Peak-weighted Quantile Loss. The model leverages both physical connectivity and functional similarity between roads through a fused adjacency matrix, while enhancing sensitivity to high-congestion events. Using real-world trajectory data from 38 CCTVs in Anyang, South Korea, experiments show that PGTFT outperforms LSTM, TFT, and GCN-TFT across different sparsity settings. Under sparse 5 m neighbor conditions, the model achieved the lowest MAE (0.059) and RMSE (0.102), while under denser 30 m settings it maintained superior accuracy with standard quantile loss. Importantly, PGTFT requires only 1.54 million parameters—about half the size of conventional Transformer–GCN hybrids—while delivering equal or better predictive performance. These results demonstrate that PGTFT is both parameter-efficient and robust, offering strong potential for deployment in smart city monitoring, emergency response, and transportation planning, as well as a practical approach to addressing data sparsity in urban sensing systems. Full article
Show Figures

Figure 1

17 pages, 7479 KB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Viewed by 521
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Graphical abstract

17 pages, 5062 KB  
Article
Wave Effects on Water Exchange Capacity in the Dalian Bay: A Numerical Study
by Xuefeng Cao, Chuanxi Xing, Jiewen Yu, Yuxian Ma, Wenqi Shi and Xianqing Lv
J. Mar. Sci. Eng. 2025, 13(2), 367; https://doi.org/10.3390/jmse13020367 - 17 Feb 2025
Cited by 2 | Viewed by 790
Abstract
The water exchange capacity (WEC) in semi-enclosed bays is influenced by various dynamical processes. Among them, the wave effects are important and yet not well-understood. In this study, the Dalian Bay, a typical coastal semi-enclosed bay located in northeastern China, was chosen as [...] Read more.
The water exchange capacity (WEC) in semi-enclosed bays is influenced by various dynamical processes. Among them, the wave effects are important and yet not well-understood. In this study, the Dalian Bay, a typical coastal semi-enclosed bay located in northeastern China, was chosen as an example, and the finite volume community ocean model (FVCOM) coupled with a wave module has been employed to investigate the wave effects on WEC in the Dalian Bay in the summer. The Dalian Bay is composed by three small-sized inner bays, Tianshuitao (TST), Hongtuduizi (HTDZ) and Choushuitao (CST), as well as the central part of the Dalian Bay (CPDB). The model performance has been evaluated comprehensively by comparing a suite of quantitative metrics, procedures and spatiotemporal patterns between the simulated results and time series current and wave measurements. The simulated results well-reproduced the observations, justifying the model’s ability in reproducing the hydrodynamics of the research region. The model results and observation all indicated that the averaged current velocities in the Dalian Bay were increased by about 0.1–0.2 m/s under wave effects during one strong wave event. Especially in the TST, the current velocities were increased most significantly. Moreover, dyed tracer experiments have been conducted to investigate the wave effects on WEC, and half-life time of different subregions of the Dalian Bay were also calculated. The results showed regional differences in wave effects. Overall, the impacts of waves were more significant in the northern part of the Dalian Bay. In the summer, southeast winds prevail, which generate waves in the southeast directions. Facilitated by regional geographical settings, waves could reach the northern part directly, which reduced the dyed tracer concentrations substantially, signifying a stronger WEC. Therefore, waves exerted the greatest impacts on the TST and reduced the local half-life time by about 10–20 days through increasing the efficiency of material transports. And the half-life time of the HTDZ, when considering the wave effects, was reduced by 15 days. However, confined by the twisting coastline, the wave effects on WEC in the CPDB and the CST were not that distinguished compared to the other parts of the bay. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 2107 KB  
Article
Computational Evaluation of Improved HIPEC Drug Delivery Kinetics via Bevacizumab-Induced Vascular Normalization
by Pouya Namakshenas, Johannes Crezee, Jurriaan B. Tuynman, Pieter J. Tanis, Arlene L. Oei and H. Petra Kok
Pharmaceutics 2025, 17(2), 155; https://doi.org/10.3390/pharmaceutics17020155 - 23 Jan 2025
Viewed by 1559
Abstract
Background: Oxaliplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) using the original 30 min protocol has shown limited benefits in patients with peritoneal metastasis of colorectal cancer (PMCRC), likely due to the short duration, which limits drug penetration into tumor nodules. Bevacizumab, an antiangiogenic antibody that [...] Read more.
Background: Oxaliplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) using the original 30 min protocol has shown limited benefits in patients with peritoneal metastasis of colorectal cancer (PMCRC), likely due to the short duration, which limits drug penetration into tumor nodules. Bevacizumab, an antiangiogenic antibody that modifies the tumor microenvironment, may improve drug delivery during HIPEC. This in silico study evaluates the availability of oxaliplatin within tumor nodules when HIPEC is performed after bevacizumab treatment. Methods: Using a computational fluid dynamics (CFD) model of HIPEC, the temperature and oxaliplatin distribution within the rat abdomen were calculated, followed by a model of drug transport within tumor nodules located at various sites in the peritoneum. The vascular normalization effect of the bevacizumab treatment was incorporated by adjusting the biophysical parameters of the tumor nodules. The effective penetration depth values, including the thermal enhancement ratio of cytotoxicity, were then compared between HIPEC alone and HIPEC combined with the bevacizumab treatment. Results: After bevacizumab treatments at doses of 0.5 mg/kg and 5 mg/kg, the oxaliplatin availability increased by up to 20% and 45% when HIPEC was performed during the vascular normalization phase, with the penetration depth increasing by 1.5-fold and 2.3-fold, respectively. Tumors with lower collagen densities and larger vascular pore sizes showed higher oxaliplatin enhancement after the combined treatment. Bevacizumab also enabled a reduction in the oxaliplatin dose (up to half at 5 mg/kg bevacizumab) while maintaining effective drug levels in the tumor nodules, potentially reducing systemic toxicity. Conclusions: These findings suggest that administering oxaliplatin-based HIPEC during bevacizumab-induced vascular normalization could significantly improve drug penetration and enhance treatment efficacy. Full article
(This article belongs to the Special Issue Mathematical Modeling in Drug Delivery)
Show Figures

Figure 1

20 pages, 5512 KB  
Article
Design and Analysis of a Novel Prefabricated Foundation for Substation Buildings
by Weicong Tian, Zhan Li and Hongxia Wan
Buildings 2024, 14(12), 4073; https://doi.org/10.3390/buildings14124073 - 21 Dec 2024
Cited by 3 | Viewed by 1888
Abstract
In recent years, prefabricated components have been widely used in the construction of substation superstructures, while cast-in-place foundations remain the primary method for substation foundations. This paper presents and evaluates a novel prefabricated foundation design aimed at enhancing construction efficiency and load-bearing performance. [...] Read more.
In recent years, prefabricated components have been widely used in the construction of substation superstructures, while cast-in-place foundations remain the primary method for substation foundations. This paper presents and evaluates a novel prefabricated foundation design aimed at enhancing construction efficiency and load-bearing performance. The foundation features a modular design, with each module weighing only half that of a cast-in-place foundation of the same size, significantly improving construction convenience and transportation efficiency. The load-bearing performance of the foundation was validated through static load tests and finite element modeling. The results indicate that the foundation demonstrates excellent ductility, with flexural failure as the primary mode, characterized by multiple cracks across the mid-span and complete yielding of longitudinal reinforcing steels. Further parametric analysis shows that increasing the plate thickness ratio (λ) improves the ultimate bearing capacity of the foundation significantly. Additionally, enlarging the cross-sectional size of the shear key or increasing the strength of the wet joint material enhances overall structural synergy, reduces local deformation, and improves load distribution efficiency. Overall, the sensitivity order of factors influencing the bearing capacity of the new prefabricated foundation is plate thickness ratio (λ) > wet joint strength > shear key cross-sectional size. Full article
(This article belongs to the Special Issue Solid Mechanics as Applied to Civil Engineering)
Show Figures

Figure 1

13 pages, 5914 KB  
Article
Two Half-Size ATP-Binding Cassette Transporters Are Implicated in Aluminum Tolerance in Soybean
by Junjun Huang, Huanan Li, Yiwei Chen, Xiaoyu Li, Ziyu Jia, Kunxia Cheng, Luyu Wang and Huahua Wang
Int. J. Mol. Sci. 2024, 25(19), 10332; https://doi.org/10.3390/ijms251910332 - 26 Sep 2024
Cited by 2 | Viewed by 1729
Abstract
Aluminum (Al) toxicity severely restricts plant production in acidic soils. ATP-binding cassette (ABC) transporters participate in plant tolerance to various environmental stresses. However, ABC transporters implicated in soybean Al tolerance are still rare. Here, we functionally characterized two half-size ABC transporters (GmABCB48 and [...] Read more.
Aluminum (Al) toxicity severely restricts plant production in acidic soils. ATP-binding cassette (ABC) transporters participate in plant tolerance to various environmental stresses. However, ABC transporters implicated in soybean Al tolerance are still rare. Here, we functionally characterized two half-size ABC transporters (GmABCB48 and GmABCB52) in soybean. Expression analysis showed that GmABCB48 and GmABCB52 were induced only in the roots, especially in the root tips. Both GmABCB48 and GmABCB52 were localized at the plasma membrane. Overexpression of GmABCB48 or GmABCB52 in Arabidopsis reduced Al accumulation in roots and enhanced Al tolerance. However, expression of GmABCB48 or GmABCB52 in yeast cells did not affect Al uptake. Furthermore, transgenic lines expressing GmABCB48 or GmABCB52 had lower Al content in root cell walls than wild-type plants under Al stress. Further investigation showed that the Al content in cell wall fractions (pectin and hemicellulose 1) of transgenic lines was significantly lower than that of wild-type plants, which was coincident with the changes of pectin and hemicellulose 1 content under Al exposure. These results indicate that GmABCB48 and GmABCB52 confer Al tolerance by regulating the cell wall polysaccharides metabolism to reduce Al accumulation in roots. Full article
(This article belongs to the Special Issue Plant Responses to Heavy Metals: From Deficiency to Excess)
Show Figures

Figure 1

24 pages, 3074 KB  
Article
Analysis of Regulation of Costs for Operating Buses in a Transport Company
by Valery Kurganov, Mikhail Gryaznov, Andrey Aduvalin, Liliya Polyakova and Aleksey Dorofeev
Sustainability 2024, 16(17), 7274; https://doi.org/10.3390/su16177274 - 23 Aug 2024
Cited by 1 | Viewed by 2803
Abstract
The problem of increasing passenger traffic remains acute for municipal public transport. The value of this indicator is determined by the interest of citizens in this way of making their trips and determines the feasibility of the carrier’s operation. The authors conducted a [...] Read more.
The problem of increasing passenger traffic remains acute for municipal public transport. The value of this indicator is determined by the interest of citizens in this way of making their trips and determines the feasibility of the carrier’s operation. The authors conducted a study of the problems of public transport services in large- and medium-sized cities, which found that the population’s interest in public urban passenger transport has generally been significantly lost. More than 40% of the city population refuses to travel on public transport, half of the population has questions about the reliability of tariff formation, and the same number of people are not satisfied with the regular route network and schedule. City residents increasingly prefer personal vehicles or taxis for their trips, which negatively affects the revenue side of carriers, as well as the level of social comfort and the quality of life of citizens. Efforts to reduce the operating costs of the carrier are aimed at correcting the current situation with urban transport so that tariffs for transportation are more acceptable for passengers. The formation of tariffs for passenger transportation for transport companies is an urgent and complex task. It is necessary to formulate the tariff in such a way as to cover your own transportation costs in the near future and, at the same time, not exceed the psychological threshold for passengers so as not to cause their negative reaction. In addition, since the transportation of passengers by urban public transport is regulated by the authorities, it is also necessary to provide an economic justification for transportation tariffs. This is difficult in the absence of substantiated indicators of consumption rates of material resources in the transport process. To solve this problem, it is necessary to carefully analyze the current costs of operating the bus fleet, as well as forecast costs for future periods. At different periods, researchers have proposed various approaches for planning the cost of operating a bus fleet. The approach we propose is to use standardization of the consumption of material resources, considering the individual operating conditions of the bus fleet and the influence of various factors. Full article
(This article belongs to the Collection Advances in Transportation Planning and Management)
Show Figures

Figure 1

22 pages, 6864 KB  
Article
Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment
by Robert E. Przekop, Bogna Sztorch, Daria Pakuła, Eliza Romańczuk-Ruszuk, Roksana Konieczna and Miłosz Frydrych
Appl. Sci. 2024, 14(10), 4235; https://doi.org/10.3390/app14104235 - 16 May 2024
Cited by 2 | Viewed by 2030
Abstract
This research, focusing on the environmental impact of tire and brake disc pad wear, constitutes a significant area of transport-related studies. These two key vehicle components are not only the most frequently worn but also generate micro- and nano-pollutants (i.e., rubber, metal oxides) [...] Read more.
This research, focusing on the environmental impact of tire and brake disc pad wear, constitutes a significant area of transport-related studies. These two key vehicle components are not only the most frequently worn but also generate micro- and nano-pollutants (i.e., rubber, metal oxides) that potentially harm the environment. Over half of the globally produced natural and synthetic rubbers, which amounted to about 30 million tons in 2022, are used for tire production. This work focuses on the study of roadside snow, sand, and standing water deposits from various locations in the urban agglomeration (Poznań, Poland) during the winter season, determining their qualitative composition and the quantitative content of pollutants originating from tire abrasion. In addition, the method of washing nano- and micro-rubber particles and their full characteristics was also presented. Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopic studies, optical and scanning electron microscopy (SEM-EDS), particle size studies using a dynamic light scattering (DLS) particle analyzer, and thermogravimetric analysis (TGA) were conducted for a detailed characterization of the pollutants in the environment. The conducted particle separation methods allowed for the extraction of a fraction mainly containing gum residues with particle sizes less than 2 µm. The results of these tests make it possible to estimate the level of contamination with rubber and metal residues during the abrasion of tires, pads, and brake discs while driving, which is crucial for understanding the impact of vehicle part exploitation on the environment. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

21 pages, 5960 KB  
Article
A Methodology for Designing One-Way Station-Based Carsharing Services in a GIS Environment: A Case Study in Palermo
by Gabriele D’Orso and Marco Migliore
ISPRS Int. J. Geo-Inf. 2024, 13(5), 148; https://doi.org/10.3390/ijgi13050148 - 29 Apr 2024
Cited by 1 | Viewed by 2222
Abstract
One-way carsharing is recognized as one of the most popular transportation services in urban areas, being an alternative option to private cars. Over the last decades, a vast amount of literature on the design of specific aspects of this service (fleet size, stations’ [...] Read more.
One-way carsharing is recognized as one of the most popular transportation services in urban areas, being an alternative option to private cars. Over the last decades, a vast amount of literature on the design of specific aspects of this service (fleet size, stations’ locations, fare, balancing operations) has formed. However, a holistic approach for designing carsharing services seems not to be developed. This paper proposes a new approach for designing one-way station-based carsharing services, presenting a five-step method, entirely developed in a GIS environment. The first three steps (suitability analysis, site selection analysis, and walkability analysis) allow finding the candidate locations for carsharing stations. After the assessment of the capacity of the potential stations, a location-allocation analysis allows for assessing the fleet size, the number of stations that maximize the coverage of carsharing demand, and their optimal locations. This paper presents a case study: a new one-way carsharing service was designed in Palermo (Italy) and compared to the existing carsharing service operating in the city. The results highlight that the current carsharing supply is undersized, having about 45% fewer stations and about half the cars compared to those resulting from the model, leaving some POIs unserved. Full article
Show Figures

Figure 1

14 pages, 8865 KB  
Article
A Genome-Wide Comparative Analysis of AUX1/LAX, PIN, and ABCB Genes Reveals Their Roles in Cucumber Fruit Curving
by Ke Lu, La Zhang, Lianxue Fan, Xiuyan Zhou and Shengnan Li
Agriculture 2024, 14(5), 657; https://doi.org/10.3390/agriculture14050657 - 24 Apr 2024
Viewed by 1949
Abstract
Auxin transport is regulated by the AUX1/LAX, PIN, and ABCB gene families, controlling the distribution of auxin and ultimately fruit curving in cucumbers. However, studies on the differential expression of these auxin transporters and their roles in fruit curving are limited. [...] Read more.
Auxin transport is regulated by the AUX1/LAX, PIN, and ABCB gene families, controlling the distribution of auxin and ultimately fruit curving in cucumbers. However, studies on the differential expression of these auxin transporters and their roles in fruit curving are limited. In this study, we identified 36 auxin transporters from cucumber, including CsLAX1–7, CsPIN1–10, and CsABCB1–19. Basic characteristic analysis revealed that all CsLAX proteins were conservative, and a C-terminal NPNTY motif was found in CsPIN1–4/7–10. CsABCB1/5/11/14/17 were categorized as half-size transporters. Phylogenetic analysis revealed a genetic relationship between auxin transporters in Arabidopsis and cucumber. Exogenous auxin treatment on fruits and qPCR analysis indicated that differential expression patterns of auxin transporters control cucumber fruit curving. Co-expression analysis indicated that CsPIN1 and CsLAX2 were substantially negatively correlated, and they displayed opposite expression patterns in curved fruits. A proposed model suggested that CsLAX2 transports extracellular auxin to the convex side of the fruit; however, CsPIN1 inhibits auxin efflux at the same location. This leads to uneven auxin distribution that results in cucumber fruit curving. Full article
Show Figures

Figure 1

31 pages, 2008 KB  
Review
Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution
by Barouch Giechaskiel, Theodoros Grigoratos, Marcel Mathissen, Joris Quik, Peter Tromp, Mats Gustafsson, Vicente Franco and Panagiota Dilara
Sustainability 2024, 16(2), 522; https://doi.org/10.3390/su16020522 - 7 Jan 2024
Cited by 68 | Viewed by 24146
Abstract
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is [...] Read more.
Tyre particles are generated by shear forces between the tread and the road or by volatilisation. Tyre abrasion (wear) contributes from one-third to half of microplastics unintentionally released into the environment. The major part ends up in the soil, a considerable amount is released into the aquatic environment, and a small percentage becomes airborne. Nevertheless, tyre abrasion contributes to 5–30% of road transport particulate matter (PM) emissions. This corresponds to approximately 5% of total ambient PM emissions. The particle mass size distribution peak at around 20 to 100 μm, with a second peak in the 2–10 μm range. A nucleation mode has been reported in some studies. The absolute abrasion levels depend on the tyre, vehicle, and road characteristics, but also on environmental conditions and driving style. Most tyre particle emission factors in the literature are based on data prior to the year 2000. We aggregated recent studies and found a mean abrasion of 110 mg/km per vehicle or 68 mg/km/t for passenger cars (based on approximately 300 measurements). Based on a limited number of studies, the PM10 emissions were 1.4–2.2 mg/km per tyre. On the other hand, the particle number emissions were in the order of 1010 #/km per tyre. The ratio of PM10 to total abrasion was found to be 2.5% on average. Finally, the ratio of PM2.5 to PM10 was calculated to be around 40%. Various mitigation measures for tyre particle pollution could be envisaged; the most direct is the limitation of the tyre abrasion rate, as proposed by the European Commission for the Euro 7 regulation. Other regulatory initiatives are also discussed. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

20 pages, 3057 KB  
Article
Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity
by Burcu Uner, Ahmet Dogan Ergin, Irfan Aamer Ansari, Melahat Sedanur Macit-Celebi, Siddique Akber Ansari and Hamad M. Al Kahtani
Molecules 2023, 28(20), 7115; https://doi.org/10.3390/molecules28207115 - 16 Oct 2023
Cited by 5 | Viewed by 6186
Abstract
Addressing obesity is a critical health concern of the century, necessitating urgent attention. L-carnitine (LC), an essential water-soluble compound, plays a pivotal role in lipid breakdown via β-oxidation and facilitates the transport of long-chain fatty acids across mitochondrial membranes. However, LC’s high hydrophilicity [...] Read more.
Addressing obesity is a critical health concern of the century, necessitating urgent attention. L-carnitine (LC), an essential water-soluble compound, plays a pivotal role in lipid breakdown via β-oxidation and facilitates the transport of long-chain fatty acids across mitochondrial membranes. However, LC’s high hydrophilicity poses challenges to its diffusion through bilayers, resulting in limited bioavailability, a short half-life, and a lack of storage within the body, mandating frequent dosing. In our research, we developed LC-loaded nanoparticle lipid carriers (LC-NLCs) using economically viable and tissue-localized nanostructured lipid carriers (NLCs) to address these limitations. Employing the central composite design model, we optimized the formulation, employing the high-pressure homogenization (HPH) method and incorporating Poloxamer® 407 (surfactant), Compritol® 888 ATO (solid lipid), and oleic acid (liquid oil). A comprehensive assessment of nanoparticle physical attributes was performed, and an open-field test (OFT) was conducted on rats. We employed immunofluorescence assays targeting CRP and PPAR-γ, along with an in vivo rat study utilizing an isolated fat cell line to assess adipogenesis. The optimal formulation, with an average size of 76.4 ± 3.4 nm, was selected due to its significant efficacy in activating the PPAR-γ pathway. Our findings from the OFT revealed noteworthy impacts of LC-NLC formulations (0.1 mg/mL and 0.2 mg/mL) on adipocyte cells, surpassing regular L-carnitine formulations’ effects (0.1 mg/mL and 0.2 mg/mL) by 169.26% and 156.63%, respectively (p < 0.05). Full article
(This article belongs to the Special Issue Multifunctional Bio-Nanomaterials for Health Care)
Show Figures

Figure 1

15 pages, 2404 KB  
Article
Prediction of Protein Ion–Ligand Binding Sites with ELECTRA
by Clement Essien, Lei Jiang, Duolin Wang and Dong Xu
Molecules 2023, 28(19), 6793; https://doi.org/10.3390/molecules28196793 - 25 Sep 2023
Cited by 1 | Viewed by 3158
Abstract
Interactions between proteins and ions are essential for various biological functions like structural stability, metabolism, and signal transport. Given that more than half of all proteins bind to ions, it is becoming crucial to identify ion-binding sites. The accurate identification of protein–ion binding [...] Read more.
Interactions between proteins and ions are essential for various biological functions like structural stability, metabolism, and signal transport. Given that more than half of all proteins bind to ions, it is becoming crucial to identify ion-binding sites. The accurate identification of protein–ion binding sites helps us to understand proteins’ biological functions and plays a significant role in drug discovery. While several computational approaches have been proposed, this remains a challenging problem due to the small size and high versatility of metals and acid radicals. In this study, we propose IonPred, a sequence-based approach that employs ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to predict ion-binding sites using only raw protein sequences. We successfully fine-tuned our pretrained model to predict the binding sites for nine metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, and K+) and four acid radical ion ligands (CO32−, SO42−, PO43−, NO2). IonPred surpassed six current state-of-the-art tools by over 44.65% and 28.46%, respectively, in the F1 score and MCC when compared on an independent test dataset. Our method is more computationally efficient than existing tools, producing prediction results for a hundred sequences for a specific ion in under ten minutes. Full article
Show Figures

Graphical abstract

17 pages, 984 KB  
Data Descriptor
VR Traffic Dataset on Broad Range of End-User Activities
by Marina Polupanova
Data 2023, 8(8), 132; https://doi.org/10.3390/data8080132 - 17 Aug 2023
Cited by 4 | Viewed by 3699
Abstract
With the emergence of new internet traffic types in modern transport networks, it has become critical for service providers to understand the structure of that traffic and predict peaks of that load for planning infrastructure expansion. Several studies have investigated traffic parameters for [...] Read more.
With the emergence of new internet traffic types in modern transport networks, it has become critical for service providers to understand the structure of that traffic and predict peaks of that load for planning infrastructure expansion. Several studies have investigated traffic parameters for Virtual Reality (VR) applications. Still, most of them test only a partial range of user activities during a limited time interval. This work creates a dataset of captures from a broader spectrum of VR activities performed with a Meta Quest 2 headset, with the duration of each real residential user session recorded for at least half an hour. Newly collected data helped show that some gaming VR traffic activities have a high share of uplink traffic and require symmetric user links. Also, we have figured out that the gaming phase of the overall gameplay is more sensitive to the channel resources reduction than the higher bitrate game launch phase. Hence, we recommend it as a source of traffic distribution for channel sizing model creation. From the gaming phase, capture intervals of more than 100 s contain the most representative information for modeling activity. Full article
(This article belongs to the Section Information Systems and Data Management)
Show Figures

Figure 1

12 pages, 1742 KB  
Article
Glutamate–Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors
by Leonid P. Savtchenko and Dmitri A. Rusakov
Cells 2023, 12(12), 1610; https://doi.org/10.3390/cells12121610 - 12 Jun 2023
Cited by 4 | Viewed by 2081 | Correction
Abstract
Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, [...] Read more.
Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the ‘average’ morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamate–transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain. Full article
(This article belongs to the Special Issue Glial Cells in Synaptic Plasticity)
Show Figures

Figure 1

Back to TopTop