Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = haemorrhagic fever viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 353 KiB  
Review
Emerging Arboviruses in Europe
by Anna Papa
Acta Microbiol. Hell. 2024, 69(4), 322-337; https://doi.org/10.3390/amh69040029 - 19 Dec 2024
Cited by 1 | Viewed by 2689
Abstract
Viruses transmitted by arthropods (arboviruses) pose a global public health threat. Sporadic cases or outbreaks caused by West Nile virus, Crimean–Congo haemorrhagic fever virus, tick-borne encephalitis virus, and phleboviruses are often reported in Europe. Recently, they expanded their distribution in geographic areas where [...] Read more.
Viruses transmitted by arthropods (arboviruses) pose a global public health threat. Sporadic cases or outbreaks caused by West Nile virus, Crimean–Congo haemorrhagic fever virus, tick-borne encephalitis virus, and phleboviruses are often reported in Europe. Recently, they expanded their distribution in geographic areas where they had never been observed before, while tropical viruses, like Dengue, Chikungunya, and Zika, started to cause autochthonous cases and outbreaks following the return of viraemic travellers from endemic countries. The primary or secondary vectors of these viruses are established in Europe, and the incidence of arboviral diseases is expected to increase due to several anthropogenic and/or environmental factors (mainly climate change, which affects the survival and amplification of the arthropod vectors). This is an update on the emerging arboviruses in Europe, associated challenges, and future perspectives. Full article
24 pages, 357 KiB  
Review
Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies
by Roger Hewson
Pathogens 2024, 13(10), 909; https://doi.org/10.3390/pathogens13100909 - 18 Oct 2024
Cited by 10 | Viewed by 4092
Abstract
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health [...] Read more.
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health systems by overwhelming healthcare facilities, complicating diagnostic processes, and requiring extensive resources for containment and treatment, especially in resource-limited settings. This discussion explores the intricate relationships between VHFs and their transmission vectors—both animal and arthropod—and examines the impact of ecological and geographic factors on disease spread. The primary transmission of VHFs typically occurs through direct contact with infected animals or via bites from haematophagous arthropods, facilitating zoonotic and, at times, human-to-human transmission. With an emphasis on the role of diverse wildlife, domesticated animals, and vectors such as mosquitoes and ticks in the epidemiology of VHFs, there is a recognised need for robust surveillance and strategic public health responses to manage outbreaks. This review discusses the necessity of interdisciplinary approaches that integrate virology, ecology, and public health to enhance diagnostic capabilities, develop vaccines and antivirals, and improve outbreak interventions. Exploring the ecological and biological dynamics of VHFs will help bolster a deeper understanding of these emerging viruses and underpin preparation for future outbreaks. The importance of enhanced global cooperation, continuous research, and collaboration to mitigate the public health threats posed by these complex infections is a central theme, serving as a foundational strategy to reinforce worldwide preparedness and response efforts. Future directions include addressing gaps in vaccine development and tailoring public health strategies to the unique challenges of managing VHFs, such as the rapid mutation rates of viruses, the need for cold chain logistics for vaccine distribution, and socio-economic barriers to healthcare access, in order to ensure readiness for and effective response to emerging threats worldwide. Full article
(This article belongs to the Special Issue Microbial Pathogenesis and Emerging Infections)
25 pages, 805 KiB  
Systematic Review
Microvascular Changes during Viral Infections: A Systematic Review of Studies Using Retinal Vessel Diameter Assessments
by Adam Saloň, Patrick De Boever and Nandu Goswami
Biomedicines 2024, 12(7), 1488; https://doi.org/10.3390/biomedicines12071488 - 5 Jul 2024
Cited by 2 | Viewed by 1852
Abstract
Viral infection frequently affects the cardiovascular system, and vascular disturbances in patients can lead to health complications. One essential component of the cardiovascular system that is vulnerable to the inflammatory effects of viral infections is the microcirculatory system. As a suitable and practical [...] Read more.
Viral infection frequently affects the cardiovascular system, and vascular disturbances in patients can lead to health complications. One essential component of the cardiovascular system that is vulnerable to the inflammatory effects of viral infections is the microcirculatory system. As a suitable and practical non-invasive method to assess the structure and function of the retinal microcirculation, a proxy for the microcirculatory system, retinal fundus imaging can be used. We examined the impact of viral infections on retinal vessel diameters and performed a systematic analysis of the literature. Our search was carried out on PubMed using predefined search queries. After a methodological filtering process, we were able to reduce the corpus of 363 publications to 16 studies that met the search parameters. We used a narrative review style to summarise the observations. Six studies covered COVID-19, seven described HIV, and three were included in the subgroup called others, covering viruses, such as Dengue Fever and Crimean–Congo Haemorrhagic Fever. Analysis of the literature showed that viral infections are associated with alterations in the retinal vessels’ vasoactivity. COVID-19 and other infections cause inflammation-associated the vasodilatation of microvasculature as a short-term effect of the infection. Long COVID-19 as well as HIV are the cause of chronic inflammation impacting microvascular morphology via retinal vessel diameter narrowing. The review emphasises the importance of the understudied area of viral infections’ effects on retinal microcirculation. Continuous research in this area is needed to further verify retinal fundus imaging as an innovative tool for the optimal diagnosis of microvascular changes. As changes in the microvasculature precede changes in bigger arteries, the early detection of microvascular changes can go a long way in reducing the morbidity and mortality associated with cardiovascular diseases. Full article
(This article belongs to the Special Issue Microcirculation in Health and Diseases)
Show Figures

Graphical abstract

17 pages, 5139 KiB  
Article
The Spatiotemporal Distribution and Molecular Characterization of Circulating Dengue Virus Serotypes/Genotypes in Senegal from 2019 to 2023
by Idrissa Dieng, Cheikh Talla, Mamadou Aliou Barry, Aboubacry Gaye, Diamilatou Balde, Mignane Ndiaye, Mouhamed Kane, Samba Niang Sagne, Moussa Moise Diagne, Boly Diop, Boubacar Diallo, Amadou Alpha Sall, Ousmane Faye, Abdourahmane Sow, Gamou Fall, Cheikh Loucoubar and Oumar Faye
Trop. Med. Infect. Dis. 2024, 9(2), 32; https://doi.org/10.3390/tropicalmed9020032 - 27 Jan 2024
Cited by 3 | Viewed by 2894
Abstract
Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and [...] Read more.
Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1–3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

30 pages, 4359 KiB  
Review
Tick-Borne Diseases of Humans and Animals in West Africa
by Adama Zan Diarra, Patrick Kelly, Bernard Davoust and Philippe Parola
Pathogens 2023, 12(11), 1276; https://doi.org/10.3390/pathogens12111276 - 24 Oct 2023
Cited by 11 | Viewed by 7023
Abstract
Ticks are a significant group of arthropod vectors that transmit a large variety of pathogens responsible for human and animal diseases worldwide. Ticks are the second biggest transmitters of vector-borne diseases, behind mosquitoes. However, in West Africa, there is often only limited knowledge [...] Read more.
Ticks are a significant group of arthropod vectors that transmit a large variety of pathogens responsible for human and animal diseases worldwide. Ticks are the second biggest transmitters of vector-borne diseases, behind mosquitoes. However, in West Africa, there is often only limited knowledge of tick-borne diseases. With the scarcity of appropriate diagnostic services, the prevalence of tick-borne diseases is generally underestimated in humans. In this review, we provide an update on tick-borne pathogens reported in people, animals and ticks in West Africa by microscopic, immunological and molecular methods. A systematic search was conducted in PubMed and Google Scholar. The selection criteria included all studies conducted in West Africa reporting the presence of Rickettsia, Borrelia, Anaplasma, Ehrlichia, Bartonella, Coxiella burnetii, Theileria, Babesia, Hepatozoon and Crimean–Congo haemorrhagic fever viruses in humans, animals or ticks. Our intention is to raise awareness of tick-borne diseases amongst human and animal health workers in West Africa, and also physicians working with tourists who have travelled to the region. Full article
(This article belongs to the Section Ticks)
Show Figures

Graphical abstract

16 pages, 4931 KiB  
Article
Molecular Evolution of Dengue Virus 3 in Senegal between 2009 and 2022: Dispersal Patterns and Implications for Prevention and Therapeutic Countermeasures
by Idrissa Dieng, Diamilatou Balde, Cheikh Talla, Diogop Camara, Mamadou Aliou Barry, Samba Niang Sagne, Khadim Gueye, Cheikh Abdou Khadre Mbacké Dia, Babacar Souleymane Sambe, Gamou Fall, Amadou Alpha Sall, Ousmane Faye, Cheikh Loucoubar and Oumar Faye
Vaccines 2023, 11(10), 1537; https://doi.org/10.3390/vaccines11101537 - 28 Sep 2023
Cited by 2 | Viewed by 2891
Abstract
Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV−2 in south-eastern Senegal [...] Read more.
Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV−2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV−3. Following the notification by Senegal, many other West African countries reported DENV−3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV−3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV−3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV−3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV−3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus. Full article
(This article belongs to the Special Issue Epidemiology, Virology, and Prevention)
Show Figures

Graphical abstract

9 pages, 2276 KiB  
Brief Report
Generation and Characterisation of Monoclonal Antibodies against Nairobi Sheep Disease Virus Nucleoprotein
by Emmanuel A. Maze, Tiphany Chrun, George Booth, Georgina Limon, Bryan Charleston and Teresa Lambe
Viruses 2023, 15(9), 1876; https://doi.org/10.3390/v15091876 - 5 Sep 2023
Viewed by 2168
Abstract
Nairobi sheep disease (NSD), caused by the viral agent NSD virus (NSDV), is a haemorrhagic fever disease affecting and inducing high mortality in sheep and goat populations. NSDV belongs to the genus Orthonairovirus of the Nairoviridae family from the order Bunyavirales. Other [...] Read more.
Nairobi sheep disease (NSD), caused by the viral agent NSD virus (NSDV), is a haemorrhagic fever disease affecting and inducing high mortality in sheep and goat populations. NSDV belongs to the genus Orthonairovirus of the Nairoviridae family from the order Bunyavirales. Other viruses circulating in livestock such as Crimean–Congo haemorrhagic fever virus (CCHFV) and Dugbe virus (DUGV) are members of the same genus and are reported to share antigenic features. There are very few available materials to study NSDV infection both in vitro and in vivo. In the present work, we characterised two monoclonal antibodies generated in mice that recognise NSDV specifically but not CCHFV or DUGV, along with a potential use to define virus-infected cells, using flow cytometry. We believe this tool can be useful for research, but also NSDV diagnostics, especially through immunological staining. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics)
Show Figures

Figure 1

15 pages, 2253 KiB  
Article
The 2022 West Nile Virus Season in Greece; A Quite Intense Season
by Danai Pervanidou, Chrysovaladou Niki Kefaloudi, Anna Vakali, Ourania Tsakalidou, Myrsini Karatheodorou, Katerina Tsioka, Maria Evangelidou, Kassiani Mellou, Styliani Pappa, Konstantina Stoikou, Vasiliki Bakaloudi, George Koliopoulos, Kostas Stamoulis, Eleni Patsoula, Constantina Politis, Christos Hadjichristodoulou and Anna Papa
Viruses 2023, 15(7), 1481; https://doi.org/10.3390/v15071481 - 29 Jun 2023
Cited by 15 | Viewed by 4561
Abstract
Since 2010, the West Nile virus (WNV) has been established in Greece. We describe the epidemiology of diagnosed human WNV infections in Greece with a focus on the 2022 season. During the transmission period, clinicians were sending samples from suspected cases for testing. [...] Read more.
Since 2010, the West Nile virus (WNV) has been established in Greece. We describe the epidemiology of diagnosed human WNV infections in Greece with a focus on the 2022 season. During the transmission period, clinicians were sending samples from suspected cases for testing. Active laboratory-based surveillance was performed with immediate notification of diagnosed cases. We collected clinical information and interviewed patients on a timely basis to identify their place of exposure. Besides serological and molecular diagnostic methods, next-generation sequencing was also performed. In 2022, 286 cases of WNV infection were diagnosed, including 278 symptomatic cases and 184 (64%) cases with neuroinvasive disease (WNND); 33 patients died. This was the third most intense season concerning the number of WNND cases, following 2018 and 2010. Most (96%) cases were recorded in two regions, in northern and central Greece. The virus strain was a variant of previous years, clustering into the Central European subclade of WNV lineage 2. The 2022 WNV season was quite intense in Greece. The prompt diagnosis and investigation of cases are considered pivotal for the timely response, while the availability of whole genome sequences enables studies on the molecular epidemiology of the disease. Full article
(This article belongs to the Special Issue Zoonotic Viral Diseases)
Show Figures

Figure 1

15 pages, 2445 KiB  
Article
Exploring the Potential of Iminosugars as Antivirals for Crimean-Congo Haemorrhagic Fever Virus, Using the Surrogate Hazara Virus: Liquid-Chromatography-Based Mapping of Viral N-Glycosylation and In Vitro Antiviral Assays
by Beatrice E. Tyrrell, Abhinav Kumar, Bevin Gangadharan, Dominic Alonzi, Juliane Brun, Michelle Hill, Tehmina Bharucha, Andrew Bosworth, Victoria Graham, Stuart Dowall, Joanna L. Miller and Nicole Zitzmann
Pathogens 2023, 12(3), 399; https://doi.org/10.3390/pathogens12030399 - 1 Mar 2023
Cited by 4 | Viewed by 2893
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a pathogen of increasing public health concern, being a widely distributed arbovirus and the causative agent of the potentially fatal Crimean-Congo haemorrhagic fever. Hazara virus (HAZV) is a genetically and serologically related virus that has been proposed [...] Read more.
Crimean-Congo haemorrhagic fever virus (CCHFV) is a pathogen of increasing public health concern, being a widely distributed arbovirus and the causative agent of the potentially fatal Crimean-Congo haemorrhagic fever. Hazara virus (HAZV) is a genetically and serologically related virus that has been proposed as a surrogate for antiviral and vaccine testing for CCHFV. Glycosylation analysis of HAZV has been limited; first, we confirmed for the first time the occupation of two N-glycosylation sites in the HAZV glycoprotein. Despite this, there was no apparent antiviral efficacy of a panel of iminosugars against HAZV, as determined by quantification of the total secretion and infectious virus titres produced following infection of SW13 and Vero cells. This lack of efficacy was not due to an inability of deoxynojirimycin (DNJ)-derivative iminosugars to access and inhibit endoplasmic reticulum α-glucosidases, as demonstrated by free oligosaccharide analysis in uninfected and infected SW13 and uninfected Vero cells. Even so, iminosugars may yet have potential as antivirals for CCHFV since the positions and importance of N-linked glycans may differ between the viruses, a hypothesis requiring further evaluation. Full article
(This article belongs to the Special Issue Emerging Vector-Borne Viral Diseases)
Show Figures

Figure 1

13 pages, 2359 KiB  
Article
Re-Emergence of Dengue Serotype 3 in the Context of a Large Religious Gathering Event in Touba, Senegal
by Idrissa Dieng, Cheikh Fall, Mamadou Aliou Barry, Aboubacry Gaye, Ndongo Dia, Marie Henriette Dior Ndione, Amary Fall, Mamadou Diop, Fatoumata Diene Sarr, Oumar Ndiaye, Mamadou Dieng, Boly Diop, Cheikh Tidiane Diagne, Mamadou Ndiaye, Gamou Fall, Mbacké Sylla, Ousmane Faye, Cheikh Loucoubar, Oumar Faye and Amadou Alpha Sall
Int. J. Environ. Res. Public Health 2022, 19(24), 16912; https://doi.org/10.3390/ijerph192416912 - 16 Dec 2022
Cited by 8 | Viewed by 2815
Abstract
Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, [...] Read more.
Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61–2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management. Full article
(This article belongs to the Collection Public Health Surveillance and Infectious Disease Control)
Show Figures

Figure 1

12 pages, 1201 KiB  
Article
Analysis of a Dengue Virus Outbreak in Rosso, Senegal 2021
by Idrissa Dieng, Mamadou Aliou Barry, Cheikh Talla, Bocar Sow, Oumar Faye, Moussa Moise Diagne, Ousseynou Sene, Oumar Ndiaye, Boly Diop, Cheikh Tidiane Diagne, Gamou Fall, Amadou Alpha Sall, Cheikh Loucoubar and Ousmane Faye
Trop. Med. Infect. Dis. 2022, 7(12), 420; https://doi.org/10.3390/tropicalmed7120420 - 7 Dec 2022
Cited by 12 | Viewed by 3424
Abstract
Senegal is hyperendemic for dengue. Since 2017, outbreaks have been noticed annually in many regions around the country, marked by the co-circulation of DENV1-3. On 8 October 2021, a Dengue virus outbreak in the Rosso health post (sentinel site of the syndromic surveillance [...] Read more.
Senegal is hyperendemic for dengue. Since 2017, outbreaks have been noticed annually in many regions around the country, marked by the co-circulation of DENV1-3. On 8 October 2021, a Dengue virus outbreak in the Rosso health post (sentinel site of the syndromic surveillance network) located in the north of the country was notified to the WHO Collaborating Center for arboviruses and hemorrhagic fever viruses at Institut Pasteur de Dakar. A multidisciplinary team was then sent for epidemiological and virologic investigations. This study describes the results from investigations during an outbreak in Senegal using a rapid diagnostic test (RDT) for the combined detection of dengue virus non-structural protein 1 (NS1) and IgM/IgG. For confirmation, samples were also tested by real-time RT-PCR and IgM ELISA at the reference lab in Dakar. qRT-PCR positive samples were subjected to whole genome sequencing using nanopore technology. Virologic analysis scored 102 positives cases (RT-PCR, NS1 antigen detection and/or IgM) out of 173 enrolled patients; interestingly, virus serotyping showed that the outbreak was caused by the DENV-1, a serotype different from DENV-2 involved during the outbreak in Rosso three years earlier, indicating a serotype replacement. Nearly all field-tested NS1 positives samples were confirmed by qRT-PCR with a concordance of 92.3%. Whole genome sequencing and phylogenetic analysis of strains suggested a re-introduction in Rosso of a DENV-1 strain different to the one responsible for the outbreak in the Louga area five years before. Findings call for improved dengue virus surveillance in Senegal, with a wide deployment of DENV antigenic tests, which allow easy on-site diagnosis of suspected cases and early detection of outbreaks. This work highlights the need for continuous monitoring of circulating serotypes which is crucial for a better understanding of viral epidemiology around the country. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

11 pages, 2546 KiB  
Article
Continuous Circulation of Yellow Fever among Rural Populations in the Central African Republic
by Huguette SIMO TCHETGNA, Stéphane DESCORPS-DECLERE, Benjamin SELEKON, Sandra GARBA-OUANGOLE, Xavier KONAMNA, Mathieu SOUNGOUZA, Gaspard TEKPA, Pierre SOMSE, Emmanuel NAKOUNE and Nicolas BERTHET
Viruses 2022, 14(9), 2014; https://doi.org/10.3390/v14092014 - 12 Sep 2022
Cited by 3 | Viewed by 2548
Abstract
Yellow fever remains a public-health threat in remote regions of Africa. Here, we report the identification and genetic characterisation of one yellow-fever case observed during the investigation of a cluster of nine suspected haemorrhagic fever cases in a village in the Central African [...] Read more.
Yellow fever remains a public-health threat in remote regions of Africa. Here, we report the identification and genetic characterisation of one yellow-fever case observed during the investigation of a cluster of nine suspected haemorrhagic fever cases in a village in the Central African Republic. Samples were tested using real-time RT-PCR targeting the main African haemorrhagic fever viruses. Following negative results, we attempted virus isolation on VERO E6 cells and new-born mice and rescreened the samples using rRT-PCR. The whole viral genome was sequenced using an Illumina NovaSeq 6000 sequencer. Yellow-fever virus (YFV) was isolated from one woman who reported farming activities in a forest setting several days before disease onset. Phylogenetic analysis shows that this strain belongs to the East–Central African YFV genotype, with an estimated emergence some 63 years ago. Finally, five unique amino-acid changes are present in the capsid, envelop, NS1A, NS3, and NS4B proteins. More efforts are required to control yellow-fever re-emergence in resource-limited settings. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 1937 KiB  
Article
Molecular Characterisation and Phylogeny of Tula Virus in Kazakhstan
by Nur Tukhanova, Anna Shin, Nurkeldi Turebekov, Talgat Nurmakhanov, Karlygash Abdiyeva, Alexandr Shevtsov, Toktasyn Yerubaev, Gulnara Tokmurziyeva, Almas Berdibekov, Vitaliy Sutyagin, Nurbek Maikanov, Andrei Zakharov, Ilmars Lezdinsh, Lyazzat Yeraliyeva, Guenter Froeschl, Michael Hoelscher, Stefan Frey, Edith Wagner, Lukas Peintner and Sandra Essbauer
Viruses 2022, 14(6), 1258; https://doi.org/10.3390/v14061258 - 9 Jun 2022
Cited by 5 | Viewed by 3029
Abstract
Orthohantaviruses are zoonotic pathogens that play a significant role in public health. These viruses can cause haemorrhagic fever with renal syndrome in Eurasia. In the Republic of Kazakhstan, the first human cases were registered in the year 2000 in the West Kazakhstan region. [...] Read more.
Orthohantaviruses are zoonotic pathogens that play a significant role in public health. These viruses can cause haemorrhagic fever with renal syndrome in Eurasia. In the Republic of Kazakhstan, the first human cases were registered in the year 2000 in the West Kazakhstan region. Small mammals can be reservoirs of orthohantaviruses. Previous studies showed orthohantavirus antigens in wild-living small mammals in four districts of West Kazakhstan. Clinical studies suggested that there might be further regions with human orthohantavirus infections in Kazakhstan, but genetic data of orthohantaviruses in natural foci are limited. The aim of this study was to investigate small mammals for the presence of orthohantaviruses by molecular biological methods and to provide a phylogenetic characterization of the circulating strains in Kazakhstan. Small mammals were trapped at 19 sites in West Kazakhstan, four in Almaty region and at seven sites around Almaty city during all seasons of 2018 and 2019. Lung tissues of small mammals were homogenized and RNA was extracted. Orthohantavirus RT-PCR assays were applied for detection of partial S and L segment sequences. Results were compared to published fragments. In total, 621 small mammals from 11 species were analysed. Among the collected small mammals, 2.4% tested positive for orthohantavirus RNA, one sample from West Kazakhstan and 14 samples from Almaty region. None of the rodents caught in Almaty city were infected. Sequencing parts of the small (S) and large (L) segments specified Tula virus (TULV) in these two regions. Our data show that geographical distribution of TULV is more extended as previously thought. The detected sequences were found to be split in two distinct genetic clusters of TULV in West Kazakhstan and Almaty region. TULV was detected in the common vole (Microtus arvalis) and for the first time in two individuals of the forest dormouse (Dryomys nitedula), interpreted as a spill-over infection in Kazakhstan. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2.0)
Show Figures

Figure 1

7 pages, 446 KiB  
Communication
Evaluation of Vector Competence of Ixodes Ticks for Kemerovo Virus
by Camille Victoire Migné, Hélène Braga de Seixas, Aurélie Heckmann, Clémence Galon, Fauziah Mohd Jaafar, Baptiste Monsion, Houssam Attoui and Sara Moutailler
Viruses 2022, 14(5), 1102; https://doi.org/10.3390/v14051102 - 20 May 2022
Cited by 2 | Viewed by 2664
Abstract
Tick-borne viruses are responsible for various symptoms in humans and animals, ranging from simple fever to neurological disorders or haemorrhagic fevers. The Kemerovo virus (KEMV) is a tick-borne orbivirus, and it has been suspected to be responsible for human encephalitis cases in Russia [...] Read more.
Tick-borne viruses are responsible for various symptoms in humans and animals, ranging from simple fever to neurological disorders or haemorrhagic fevers. The Kemerovo virus (KEMV) is a tick-borne orbivirus, and it has been suspected to be responsible for human encephalitis cases in Russia and central Europe. It has been isolated from Ixodes persulcatus and Ixodes ricinus ticks. In a previous study, we assessed the vector competence of I. ricinus larvae from Slovakia for KEMV, using an artificial feeding system. In the current study, we used the same system to infect different tick population/species, including I. ricinus larvae from France and nymphs from Slovakia, and I. persulcatus larvae from Russia. We successfully confirmed the first two criteria of vector competence, namely, virus acquisition and trans-stadial transmission, for both tick species that we tested. The estimated infection rates of engorged and moulted ticks suggest specificities between viral strains and tick species/developmental stages. Full article
(This article belongs to the Special Issue Virus-Vector Interactions)
Show Figures

Figure 1

27 pages, 1521 KiB  
Systematic Review
Influence of Climatic Factors on Human Hantavirus Infections in Latin America and the Caribbean: A Systematic Review
by Kirk Osmond Douglas, Karl Payne, Gilberto Sabino-Santos and John Agard
Pathogens 2022, 11(1), 15; https://doi.org/10.3390/pathogens11010015 - 23 Dec 2021
Cited by 24 | Viewed by 7275
Abstract
Background: With the current climate change crisis and its influence on infectious disease transmission there is an increased desire to understand its impact on infectious diseases globally. Hantaviruses are found worldwide, causing infectious diseases such as haemorrhagic fever with renal syndrome (HFRS) and [...] Read more.
Background: With the current climate change crisis and its influence on infectious disease transmission there is an increased desire to understand its impact on infectious diseases globally. Hantaviruses are found worldwide, causing infectious diseases such as haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS)/hantavirus pulmonary syndrome (HPS) in tropical regions such as Latin America and the Caribbean (LAC). These regions are inherently vulnerable to climate change impacts, infectious disease outbreaks and natural disasters. Hantaviruses are zoonotic viruses present in multiple rodent hosts resident in Neotropical ecosystems within LAC and are involved in hantavirus transmission. Methods: We conducted a systematic review to assess the association of climatic factors with human hantavirus infections in the LAC region. Literature searches were conducted on MEDLINE and Web of Science databases for published studies according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria. The inclusion criteria included at least eight human hantavirus cases, at least one climatic factor and study from > 1 LAC geographical location. Results: In total, 383 papers were identified within the search criteria, but 13 studies met the inclusion criteria ranging from Brazil, Chile, Argentina, Bolivia and Panama in Latin America and a single study from Barbados in the Caribbean. Multiple mathematical models were utilized in the selected studies with varying power to generate robust risk and case estimates of human hantavirus infections linked to climatic factors. Strong evidence of hantavirus disease association with precipitation and habitat type factors were observed, but mixed evidence was observed for temperature and humidity. Conclusions: The interaction of climate and hantavirus diseases in LAC is likely complex due to the unknown identity of all vertebrate host reservoirs, circulation of multiple hantavirus strains, agricultural practices, climatic changes and challenged public health systems. There is an increasing need for more detailed systematic research on the influence of climate and other co-related social, abiotic, and biotic factors on infectious diseases in LAC to understand the complexity of vector-borne disease transmission in the Neotropics. Full article
(This article belongs to the Special Issue Zoonotic Viral Infections and Climate Change)
Show Figures

Graphical abstract

Back to TopTop