Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = groundwater CDOM-EEM spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5748 KB  
Article
The Influence of Groundwater Migration on Organic Matter Degradation and Biological Gas Production in the Central Depression of Qaidam Basin, China
by Jixian Tian, Qiufang He, Zeyu Shao and Fei Zhou
Water 2024, 16(15), 2163; https://doi.org/10.3390/w16152163 - 31 Jul 2024
Cited by 1 | Viewed by 1353
Abstract
For insight into the productive and storage mechanisms of biogas in the Qaidam Basin, efforts were made to investigate the groundwater recharge and the processes of hydrocarbon generation by CDOM-EEM (fluorescence excitation-emission matrix of Chromophoric dissolved organic matter) spectrum, hydrogen and oxygen isotopes, [...] Read more.
For insight into the productive and storage mechanisms of biogas in the Qaidam Basin, efforts were made to investigate the groundwater recharge and the processes of hydrocarbon generation by CDOM-EEM (fluorescence excitation-emission matrix of Chromophoric dissolved organic matter) spectrum, hydrogen and oxygen isotopes, and geochemical characters in the central depression of the Qaidam Basin, China. The samples contain formation water from three gas fields (TN, SB, and YH) and surrounding surface water (fresh river and brine lake). The results indicate that modern precipitation significantly controls the salinity distribution and organic matter leaching in the groundwater system of the central depression of the Qaidam Basin. Higher salinity levels inhibit microbial activity, which leads to organic matter degradation and to gas generation efficiency being limited in the groundwater. The inhabitation effect is demonstrated by the notable negative correlation between the extent of organic matter degradation and its concentration with hydrogen and oxygen isotopes. The conclusion of this study indicated that modern precipitation emerges as a crucial factor affecting the biogas production and storage in the Qaidam Basin by influencing the ultimate salinity and organic matter concentration in the formation, which provides theoretical insight for the maintenance of modern gas production wells and the assessment of gas production potential. Full article
(This article belongs to the Special Issue Isotope Geochemistry of Groundwater: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop