Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = glycerol trinitrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2936 KB  
Article
Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab
by Nicola Benedicter, Birgit Vogler, Annette Kuhn, Jana Schramm, Kimberly D. Mackenzie, Jennifer Stratton, Mária Dux and Karl Messlinger
Cells 2024, 13(7), 572; https://doi.org/10.3390/cells13070572 - 25 Mar 2024
Cited by 4 | Viewed by 1875
Abstract
Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used [...] Read more.
Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals’ activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity. Full article
(This article belongs to the Special Issue Migraine Neuroscience: From Experimental Models to Target Therapy)
Show Figures

Figure 1

18 pages, 2056 KB  
Article
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow
by Mária Dux, Birgit Vogler, Annette Kuhn, Kimberly D. Mackenzie, Jennifer Stratton and Karl Messlinger
Cells 2022, 11(11), 1768; https://doi.org/10.3390/cells11111768 - 28 May 2022
Cited by 18 | Viewed by 3738
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be [...] Read more.
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain. Full article
(This article belongs to the Special Issue Migraine Neuroscience: From Experimental Models to Target Therapy)
Show Figures

Figure 1

Back to TopTop